Pain
-
Multicenter Study Comparative Study
Sleep onset insomnia symptoms during hospitalization for major burn injury predict chronic pain.
Both cross-sectional studies of chronic pain and sleep deprivation experiments suggest a bi-directional relationship between sleep and pain. Few longitudinal studies, however, have assessed whether acute insomnia following traumatic injury predicts the development of persistent pain. We sought to evaluate (1) whether in-hospital insomnia independently predicts long-term pain after burn injury and (2) whether in-hospital pain predicts future insomnia symptoms. ⋯ In-hospital insomnia and pre-burn mental health symptoms were also highly significant predictors of insomnia. This study provides support for a long-term, prospective and reciprocal interaction between insomnia and pain. Future work should ascertain whether treatment of insomnia and pain during acute injury can prevent or minimize chronic pain.
-
Comparative Study
A-kinase anchoring protein mediates TRPV1 thermal hyperalgesia through PKA phosphorylation of TRPV1.
Certain phosphorylation events are tightly controlled by scaffolding proteins such as A-kinase anchoring protein (AKAP). On nociceptive terminals, phosphorylation of transient receptor potential channel type 1 (TRPV1) results in the sensitization to many different stimuli, contributing to the development of hyperalgesia. In this study, we investigated the functional involvement of AKAP150 in mediating sensitization of TRPV1, and found that AKAP150 is co-expressed in trigeminal ganglia (TG) neurons from rat and associates with TRPV1. ⋯ In CHO cells, the PKA RII binding site on AKAP was necessary for PKA enhancement of TRPV1-mediated Ca2+-accumulation. In addition, AKAP150 knock-down in cultured TG neurons attenuated PKA sensitization of TRPV1 activity and in vivo administration of an AKAP antagonist significantly reduced prostaglandin E2 sensitization to thermal stimuli. These data suggest that AKAP150 functionally regulates PKA-mediated phosphorylation/sensitization of the TRPV1 receptor.
-
Comparative Study
Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice.
Recent studies indicate that reactive oxygen species (ROS) are critically involved in persistent pain primarily through spinal mechanisms, thus suggesting ROS involvement in central sensitization. To investigate ROS involvement in central sensitization, the effects of ROS scavengers and donors on pain behaviors were examined in mice. Capsaicin- induced hyperalgesia was used as a pain model since it has 2 distinctive pain components, primary and secondary hyperalgesia representing peripheral and central sensitization, respectively. ⋯ On the other hand, intrathecal injection of tert-butylhydroperoxide (t-BOOH, 5 microl), a ROS donor, produced a transient hyperalgesia in a dose-dependent manner. The number of MitoSox positive dorsal horn neurons was increased significantly after capsaicin treatment. This study suggests that ROS mediates the development and maintenance of capsaicin-induced hyperalgesia in mice, mainly through central sensitization and that the elevation of spinal ROS is most likely due to increased production of mitochondrial superoxides in the dorsal horn neurons.
-
Comparative Study
Interleukin-1 alpha has antiallodynic and antihyperalgesic activities in a rat neuropathic pain model.
Nerve injury and the consequent release of interleukins (ILs) are processes implicated in pain transmission. To study the potential role of IL-1 in the pathogenesis of allodynia and hyperalgesia, IL-1alpha and comparative IL-1beta, IL-6, and IL-10 mRNA levels were quantified using competitive RT-PCR of the lumbar spinal cord and dorsal root ganglia (DRG; L5-L6) three and seven days after chronic constriction injury (CCI) in rats. Microglial and astroglial activation in the ipsilateral spinal cord and DRG were observed after injury. ⋯ In rats exposed to CCI, an IL-1alpha or IL-1 receptor antagonist dose-dependently attenuated symptoms of neuropathic pain; however, no effect of IL-1beta was observed. In sum, the first days after CCI showed a high abundance of IL-1alpha in the DRG. Together with the antiallodynic and antihyperalgesic effects observed after IL-1alpha administration, this finding indicates an important role for IL-1alpha in the development of neuropathic pain symptoms.
-
Comparative Study
Glycinergic mediation of tactile allodynia induced by platelet-activating factor (PAF) through glutamate-NO-cyclic GMP signalling in spinal cord in mice.
Our previous study showed that intrathecal (i.t.) injection of platelet-activating factor (PAF) induced tactile allodynia, suggesting that spinal PAF is a mediator of neuropathic pain. The present study further examined the spinal molecules participating in PAF-induced tactile allodynia in mice. I.t. injection of L-arginine, NO donor (5-amino-3-morpholinyl-1,2,3-oxadiazolium (SIN-1) or 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (NOC-18)) or cGMP analog (8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate; pCPT-cGMP) induced tactile allodynia. ⋯ A significant reduction of GlyR alpha3 expression in the spinal superficial layers of mice treated with GlyR alpha3 siRNA was confirmed by immunohistochemical and Western blotting analyses. Functional targeting of GlyR alpha3 was suggested by the loss of PGE(2)-induced thermal hyperalgesia and the enhancement of allodynia induced by bicuculline, a GABA(A) receptor antagonist in mice after GlyR alpha3 siRNA treatment. pCPT-cGMP, PAF, glutamate and SIN-1 all failed to induce allodynia after the knockdown of GlyR alpha3. These results suggest that the glutamate-NO-cGMP-PKG pathway in the spinal cord may be involved in the mechanism of PAF-induced tactile allodynia, and GlyR alpha3 could be a target molecule through which PKG induces allodynia.