Pain
-
It is not clear how males and females cope with pain over time and how sensory and emotional qualities fluctuate from moment to moment, although studies of pain at discrete time points suggest that women are more pain sensitive than men. Therefore, we developed a new broader-based pain model that incorporates a temporally continuous assessment of multiple pain dimensions across sensory and affective dimensions, and normalized peak pain intensity to unmask sex differences that may otherwise be confounded by inter-individual variability in pain sensitivity. We obtained continuous ratings of pain, burning, sharp, stinging, cutting, and annoyance evoked by repeated prolonged noxious heat stimuli in 32 subjects. ⋯ These findings suggest a sexual dichotomy in mechanisms underlying pain intensity and annoyance that could involve specific quality-linked mechanisms. Importantly, temporal processing of pain differs between males and females when adjusted for sex differences in pain sensitivity. Our findings provide insight into sex differences in tonic and possibly chronic pains.
-
Sigma-1 receptor (sigma(1)R) is expressed in key CNS areas involved in nociceptive processing but only limited information is available about its functional role. In the present study we investigated the relevance of sigma(1)R in modulating nerve injury-evoked pain. For this purpose, wild-type mice and mice lacking the sigma(1)R gene were exposed to partial sciatic nerve ligation and neuropathic pain-related behaviors were investigated. ⋯ In addition, in contrast to wild-type mice, sigma(1)R knockout mice did not show increased phosphorylation of ERK in the spinal cord after sciatic nerve injury. Both wind-up and ERK activation have been related to mechanisms of spinal cord sensitization. Our findings identify sigma(1)R as a constituent of the mechanisms modulating activity-induced sensitization in pain pathways and point to sigma(1)R as a new potential target for drugs designed to alleviate neuropathic pain.