Pain
-
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder in which the underlying pathophysiology is poorly understood; however, increased intestinal permeability in diarrhea-predominant IBS patients has been reported. Here we demonstrate that diarrhea-predominant IBS (D-IBS) patients display increased intestinal permeability. We have also found that increased intestinal membrane permeability is associated with visceral and thermal hypersensitivity in this subset of D-IBS patients. ⋯ Interestingly, the IBS patients with hypersensitivity and increased intestinal permeability had a higher FBDSI score (100.8 + or - 5.4) than IBS patients with normal membrane permeability and sensitivity (51.6 + or - 12.7) and controls (6.1 + or - 5.6) (p<0.001). A subset of D-IBS patients had increased intestinal membrane permeability that was associated with an increased FBDSI score and increased hypersensitivity to visceral and thermal nociceptive pain stimuli. Thus, increased intestinal membrane permeability in D-IBS patients may lead to more severe IBS symptoms and hypersensitivity to somatic and visceral stimuli.
-
Adrenomedullin (AM), a member of calcitonin gene-related peptide (CGRP) family, has been demonstrated to be a pronociceptive mediator [28]. This study was undertaken to investigate the role of AM in a model of complete Freund's adjuvant (CFA)-induced inflammatory pain. Injection of CFA, but not of saline, in the unilateral hindpaw produced an increase in the expression of AM-like immunoreactivity (AM-IR) in laminae I-II of the spinal cord as well as in small- and medium-sized dorsal root ganglion (DRG) neurons at 48 h. ⋯ Furthermore, blockade of AM receptors abolished CFA-induced changes in the expression and content of CGRP-like immunoreactivity in these regions. Taken together, our results suggest that the upregulation of AM in DRG neurons contributes to the development of inflammatory pain, and this effect is mediated, at least in part, by enhancing the expression and release of CGRP. Blocking AM receptor downstream signaling effects using antagonists has the potential of relieving pain following the induction of inflammation.
-
Change in facial expression over a fixed time after a noxious stimulus is the key measure used to calculate pain scores in preterm and newborn infants. We hypothesised that the latency of facial motor responses would be longer in the youngest premature infants and that behavioural scoring methods of pain may need to take this into account. One hundred and seventy-two clinically required heel lances were performed in 95 infants from 25 to 44 weeks postmenstrual age (PMA). ⋯ Sleep state and presence of brain damage (IVH grades 1-4) did not significantly increase the latency (p > 0.05 for each variable). Intravenous morphine at the time of the heel lance significantly increased the latency to facial expression response (p < 0.001) but the analysis shows that latency is highly dependent on PMA independent of morphine administration. These findings highlight developmental changes underlying infant behaviour that are critically important if pain scores are to be correctly interpreted.
-
Epibatidine has shown antinociceptive effects in various pain models, being 200-fold more potent than morphine. Previous results from our laboratory demonstrated that HO-1 overexpression has an antinociceptive effect in the formalin test. Furthermore, epibatidine was able to induce haeme oxygenase-1 (HO-1). ⋯ Furthermore, the antinociceptive effect of epibatidine was related to the activation of alpha7 and/or alpha9 nAChRs since methyllycaconitine (MLA) and mecamylamine but not dihydro-beta-erythroidine (DHbetaE) reverted this effect. Finally, we showed by flow cytometry and by immunofluorescence that white blood cells of the animals injected with epibatidine expressed more HO-1 than control animals, and this expression was also reverted by MLA pre-treatment. These findings demonstrate that HO-1 induction by epibatidine has antinociceptive and anti-inflammatory effects by the activation of MLA-sensitive nAChRs.
-
Oxaliplatin is a platinum-based chemotherapy drug characterized by the development of a painful peripheral neuropathy which is reproduced in rodent animal models with features observed in humans. Our focus was to explore the alterations of intracellular second messengers at supraspinal level in oxaliplatin-induced mechanical hyperalgesia. In our experiments, chronic administration of oxaliplatin to rats induced mechanical hyperalgesia which lasted for many days. ⋯ Distinct PKC-activated MAPK pathways, including p38MAPK, ERK1/2 and JNK, were investigated in chronic oxaliplatin rat. A dramatic phosphorylation increase, Calphostin C sensitive, could be observed in thalamus and PAG for p38MAPK. These data show that, in oxaliplatin-induced neuropathy, enhanced mechanical nociception is strictly correlated with increased phosphorylation of specific intracellular mediators in PAG and thalamus brain regions pointing to a role of these supraspinal centers in oxaliplatin-induced neuropathic pain mechanism.