Pain
-
Previous research has demonstrated that the nociceptive flexion reflex (NFR) and pain-related evoked potentials are reduced in amplitude when elicited during the middle of the cardiac cycle. Despite these findings, suggesting a baroreceptor mechanism of antinociception during systole, pain intensity ratings reported in these studies were not modulated across the cardiac cycle. This discrepancy between the neurophysiological correlates of pain and its subjective experience was the focus of the current study that used a mixed block design to assess the effects of natural arterial baroreceptor activity on both the NFR and pain intensity and unpleasantness reports. ⋯ Finally, nociceptive responses did not differ among the R-wave to stimulation intervals for both painful and non-painful intensities. The observed phasic modulation of pain may be explained by a central nervous system alarm/defence reaction triggered by the unpredictability of the potentially damaging stimulation. The absence of systolic attenuation of nociceptive responding is compatible with previous evidence that baroreceptor modulation of the NFR is abolished under conditions of heightened arousal.
-
Olesoxime is a small cholesterol-like molecule that was discovered in a screening program aimed at finding treatment for amyotrophic lateral sclerosis and other diseases where motor neurons degenerate. In addition to its neuroprotective and pro-regenerative effects on motor neurons in vitro and in vivo, it has been shown to have analgesic effects in rat models of painful peripheral neuropathy due to vincristine and diabetes. We used a rat model of painful peripheral neuropathy produced by the chemotherapeutic agent, paclitaxel, to determine whether olesoxime could reverse established neuropathic pain. ⋯ Giving olesoxime during the exposure to paclitaxel significantly and permanently reduced the severity of mechano-allodynia and mechano-hyperalgesia and significantly reduced the amount of sensory terminal arbor degeneration. Olesoxime targets mitochondrial proteins and its effects are consistent with the mitotoxicity hypothesis for paclitaxel-evoked painful peripheral neuropathy. We conclude that olesoxime may be useful clinically for both the prevention and treatment of paclitaxel-evoked painful peripheral neuropathy.
-
Cold allodynia is a common sign of neuropathic pain patients but its underlying mechanisms are still largely unknown, partly because the populations of neurons responding to cold stimuli and their transduction mechanisms have not been fully determined. We report a patient with a small-fiber neuropathy of unknown origin, whose main complaint is cold allodynia. ⋯ These findings provide the first direct evidence in human of abnormal peripheral nociceptor behavior potentially responsible for cold allodynia. The responsiveness of C-nociceptors to menthol suggests an abnormal expression or function of TRPM8 channels in this patient with a small-fiber polyneuropathy.
-
In adult patients with migraine, transcranial magnetic stimulation (TMS) has been used to examine cortical excitability between attacks, but there have been discrepant results. No TMS study has examined cortical excitability in children or adolescents with migraine. Here, we employed TMS to study regional excitability of the occipital (phosphene threshold [PT] and suppression of visual perception) and motor (resting motor threshold and cortical silent period) cortex in ten children suffering from migraine without aura and ten healthy age-matched controls. ⋯ Motor cortex excitability was not altered in patients and did not change during the migraine cycle. These findings show that pediatric migraine without aura is associated with a systematic shift in occipital excitability preceding the migraine attack. Similar systematic fluctuations in cortical excitability might be present in adult migraineurs and may reflect either a protective mechanism or an abnormal decrease in cortical excitability that predisposes an individual to a migraine attack.
-
The central processing of peripheral nociceptive messages is highly controlled by the activity of local inhibitory networks in the spinal cord and supraspinal centers. Recently, it has been shown that endogenous 3alpha-reduced neurosteroids (3alphaNS) exert a significant spinal antinociception by potentiating GABA(A) receptor function. Because endogenous 3alphaNS can be produced in many relay structures of the nociceptive system, we tested the potential analgesic efficacy of promoting the production of neurosteroids by using etifoxine (ETX, 50mg/kg i.p.). ⋯ Both the curative and preventive effects of ETX on pain symptoms were mediated by the production of 3alphaNS as demonstrated in animals treated with the enzymatic inhibitor provera (6-medroxyprogesterone acetate; 20mg/kg s.c.). Altogether, this study shows for the first time that promoting 3alphaNS could be a possible therapeutic strategy to treat neuropathic pain symptoms. Since ETX is already available as an anxiolytic, its use in humans, provided that its analgesic properties are confirmed, could be rapidly considered.