Pain
-
Expectations and beliefs modulate the experience of pain, which is particularly evident in placebo analgesia. The dorsolateral prefrontal cortex (DLPFC) has been associated with pain regulation and with the generation, maintenance and manipulation of cognitive representations, consistent with its role in expectation. ⋯ While rTMS did not affect pain experience, it completely blocked placebo analgesia. These findings suggest that expectation-induced placebo analgesia is mediated by symmetric prefrontal cortex function.
-
Pain following injury to the nervous system is characterized by changes in sensory processing including pain. Although there are many studies describing pain evoked by peripheral stimulation, we have recently reported that pain can be evoked in subjects with complete spinal cord injury (SCI) during a motor imagery task. In this study, we have used functional magnetic resonance imaging to explore brain sites underlying the expression of this phenomenon. ⋯ In addition, in the SCI subjects, the magnitude of activation in the perigenual anterior cingulate cortex and right dorsolateral prefrontal cortex was significantly correlated with absolute increases in pain intensity. These regions expanded to include right and left anterior insula, supplementary motor area and right premotor cortex when percentage change in pain intensity was examined. This study demonstrates that in SCI subjects with neuropathic pain, a cognitive task is able to activate brain circuits involved in pain processing independently of peripheral inputs.
-
Habituation to repetitive painful stimulation may represent an important protection mechanism against the development of chronic pain states. However, the exact neurobiological mechanisms of this phenomenon remain unclear. In this study we (i) explore the somatotopic specificity of pain attenuation over time and (ii) investigate the role of the endogenous opioid system in its development. ⋯ This effect was less pronounced at the untreated arm compared to the treated arm and even weaker in the leg, displaying a significant Stimulation-Site x Time interaction. The development of pain habituation was unaffected by the opioid antagonist naloxone. Taken together, these results strongly support the role of central components in the mechanism of pain habituation that do not directly involve the endogenous opioid system.
-
This study investigated the role of TRPA1 in the development and maintenance of mechanical and cold hyperalgesia in persistent inflammation induced by Complete Freund's Adjuvant (CFA) in mice. The intraplantar (i.pl.) injection of CFA induced a long lasting (28 days) hyperalgesia for both mechanical and thermal (cold) stimuli. The intraperitoneal (i.p., 30-300 mg/kg), intraplantar (i.pl., 100 microg/site) or intrathecal (i.t., 10 microg/site) injection of the TRPA1 selective antagonist HC-030031 significantly reduced the mechanical hyperalgesia evaluated by the von Frey hair test. ⋯ Interestingly, both TRPA1 protein expression and mRNA were over-expressed in spinal cord and dorsal root ganglia (DRG) of mice treated with CFA, an effect that was fully prevented by the pre-treatment with the TRPA1 antagonist HC-030031. Collectively, the present results showed that TRPA1 present at either peripheral or spinal sites play a relevant role in the development and maintenance of both mechanical and cold hyperalgesia during CFA-induced inflammation. Thus, TRPA1 selective antagonists represent promising candidates to treat hyperalgesia in persistent inflammatory states.
-
Dyspnea and pain have a number of similarities. Recent brain imaging experiments showed that similar cortical regions are activated by the perceptions of dyspnea and pain. We tested the hypothesis that an individual's pain sensitivity might parallel the individual's dyspnea sensitivity. ⋯ A significant correlation was observed between the pain threshold time and the period of no respiratory sensation in both the PT and PS groups. However, no significant association was observed between pain and dyspnea tolerance in both groups. In conclusion, an individual's pain threshold is correlated to the individual's dyspnea threshold, but the individual's pain tolerance is not consistently correlated to the individual's dyspnea tolerance.