Pain
-
Comparative Study
Contribution of afferent pathways to nerve injury-induced spontaneous pain and evoked hypersensitivity.
A predominant complaint in patients with neuropathic pain is spontaneous pain, often described as burning. Recent studies have demonstrated that negative reinforcement can be used to unmask spontaneous neuropathic pain, allowing for mechanistic investigations. Here, ascending pathways that might contribute to evoked and spontaneous components of an experimental neuropathic pain model were explored. ⋯ These data suggest that spontaneous neuropathic pain and thermal hyperalgesia are mediated by TRPV1-positive fibers and spinal NK-1-positive ascending projections. In contrast, the large-diameter dorsal column projection can mediate nerve injury-induced tactile hypersensitivity, but does not contribute to spontaneous pain. Because inhibition of tactile hypersensitivity can be achieved either by spinal manipulations or by inactivation of signaling within the nucleus gracilis, the enhanced paw withdrawal response evoked by tactile stimulation does not necessarily reflect allodynia.
-
Somatoform disorders are characterized by the presence of multiple somatic symptoms. Patients often experience different pain syndromes, and recent research suggests that sympathovagal balance is disturbed in somatoform patients, which could be related to alteration in pain sensitivity. This study analyzed how proposed sympathovagal imbalance interacts with objective pain assessment and the imagination of pain in somatoform disorders. ⋯ We conclude that our data demonstrate an imbalance in sympathovagal activation and a hyposensitivity to pain tolerance stimuli in somatoform disorders. Parasympathetic reactivity might form crucial information when judging pain-associated affective-motivational components. Our results might be attributable to a deficient detection of visceral signals and might be a pathogenetic mechanism for the development of emotional difficulties and increased everyday vulnerability in somatoform patients.
-
Comparative Study
Spatiotemporal and anatomical analyses of P2X receptor-mediated neuronal and glial processing of sensory signals in the rat dorsal horn.
Extracellularly released adenosine triphosphate (ATP) modulates sensory signaling in the spinal cord. We analyzed the spatiotemporal profiles of P2X receptor-mediated neuronal and glial processing of sensory signals and the distribution of P2X receptor subunits in the rat dorsal horn. Voltage imaging of spinal cord slices revealed that extracellularly applied ATP (5-500 μM), which was degraded to adenosine and acting on P1 receptors, inhibited depolarizing signals and that it also enhanced long-lasting slow depolarization, which was potentiated after ATP was washed out. ⋯ Astrocytes expressed the P2X(7) subunit. These findings indicate that extracellular ATP is degraded into adenosine and prevents overexcitation of the sensory system, and that ATP acts on pre- and partly on postsynaptic neuronal P2X receptors and enhances synaptic transmission, predominantly in the deep layer. Astrocytes are involved in sensitization of sensory network activity more importantly in the superficial than in the deep layer.
-
Randomized Controlled Trial Comparative Study
A randomized, controlled trial of acceptance and commitment therapy and cognitive-behavioral therapy for chronic pain.
Individuals reporting chronic, nonmalignant pain for at least 6 months (N=114) were randomly assigned to 8 weekly group sessions of acceptance and commitment therapy (ACT) or cognitive-behavioral therapy (CBT) after a 4-6 week pretreatment period and were assessed after treatment and at 6-month follow-up. The protocols were designed for use in a primary care rather than specialty pain clinic setting. ⋯ Although there were no differences in attrition between the groups, ACT participants who completed treatment reported significantly higher levels of satisfaction than did CBT participants. These findings suggest that ACT is an effective and acceptable adjunct intervention for patients with chronic pain.