Pain
-
Comparative Study
How efficient is the orienting of spatial attention to pain? An experimental investigation.
This study investigated how efficient spatial attention was oriented to pain in 2 experiments. Participants detected whether painful (pain group) or nonpainful (control group) somatosensory stimuli were delivered to the left or right hand. Each stimulus was preceded by a visual cue presented near to the stimulated hand (valid trial), the opposite hand (invalid trial), or centrally between hands. ⋯ This effect was due to faster responses on valid relative to baseline trials (engagement), rather than slower responses on invalid relative to baseline trials (disengagement), and was significantly correlated with self-reported bodily threat. In experiment 2, prioritization of the pain location was probably overridden by task strategies because it was advantageous for participants' task performance to attend to the cued location irrespective of whether stimulation was painful or not. Implications of these findings for theories of hypervigilance and attentional management of pain are discussed.
-
Injuries can induce adaptations in pain processing that result in amplification of signaling. One mechanism may be analogous to long-term potentiation and involve the atypical protein kinase C, PKMζ. The possible contribution of PKMζ-dependent and independent amplification mechanisms to experimental neuropathic pain was explored in rats with spinal nerve ligation (SNL) injury. ⋯ Thus, PKMζ-dependent amplification contributes to nerve injury-induced aversiveness within the rACC. Moreover, unlike mechanisms maintaining memory, the consequences of PKMζ inhibition within the rACC are not permanent in neuropathic pain, possibly reflecting the re-establishment of amplification mechanisms by ongoing activity of injured nerves. In the spinal cord, however, both PKMζ-dependent and independent mechanisms contribute to amplification of evoked responses, but apparently not spontaneous pain.
-
Chronic low back pain (LBP) is a complex, multifactorial disorder with unclear underlying mechanisms. In humans and rodents, decreased expression of secreted protein acidic rich in cysteine (SPARC) is associated with intervertebral disc (IVD) degeneration and signs of LBP. The current study investigates the hypothesis that IVD degeneration is a risk factor for chronic LBP. ⋯ Morphine (6 mg/kg, i.p.) reduced cutaneous sensitivity and alleviated axial discomfort in SPARC-null mice. Ageing SPARC-null mice mirror many aspects of the complex and challenging nature of LBP in humans and incorporate both anatomic and functional components of the disease. The current study supports the hypothesis that IVD degeneration is a risk factor for chronic LBP.
-
Damage to peripheral nerves causes significant remodeling of peripheral innervation and can lead to neuropathic pain. Most nociceptive primary afferents are unmyelinated (C fibers) and subdivided into peptidergic and nonpeptidergic fibers. Previous studies have found nerve injury in the trigeminal system to induce changes in small-diameter primary afferent innervation and cause significant autonomic sprouting into the upper dermis of the lower-lip skin of the rat. ⋯ These changes were associated with significant increase in glial-derived nerve growth factor levels in the lower-lip skin. While IB4-saporin treatment had no effect on evoked mechanical thresholds when von Frey hairs were applied to the lower-lip skin, ablation of nonpeptidergic fibers in a chronic constriction injury model caused significant sympathetic and parasympathetic fiber sprouting, and led to an exacerbated pain response. This was an unexpected finding, as it has been suggested that nonpeptidergic fibers play a major role in mechanical pain, and suggests that these fibers play a complex role in the development of neuropathic pain.