Pain
-
We have modeled the transition from acute to chronic pain in the rat. In this model (termed hyperalgesic priming) a chronic state develops after a prior inflammatory process or exposure to an inflammatory mediator, in which response to subsequent exposure to prostaglandin E2 (PGE2) is characterized by a protein kinase Cε-dependent marked prolongation of mechanical hyperalgesia. To assess the effect of priming on the function of the nociceptor, we have performed in vitro patch clamp and in vivo single-fiber electrophysiology studies using tumor necrosis factor α to induce priming. ⋯ However, 60 minutes after PGE2 administration, the response to mechanical stimulation was further increased in primed but not in control nociceptors. Thus, at the level of the primary afferent nociceptor, it is possible to demonstrate both altered function at baseline and prolonged PGE2-induced sensitization. Intrathecal antisense (AS) to Kv7.2, which contributes to RMP in sensory neurons, reversibly prevented the expression of priming in both behavioral and single-fiber electrophysiology experiments, implicating these channels in the expression of hyperalgesic priming.
-
Children born very prematurely (< or =32 weeks) often exhibit visual-perceptual difficulties at school-age, even in the absence of major neurological impairment. The alterations in functional brain activity that give rise to such problems, as well as the relationship between adverse neonatal experience and neurodevelopment, remain poorly understood. Repeated procedural pain-related stress during neonatal intensive care has been proposed to contribute to altered neurocognitive development in these children. ⋯ We demonstrated alterations in the spectral structure of spontaneous cortical oscillatory activity in ELGA children at school-age. Cumulative neonatal pain-related stress was associated with changes in background cortical rhythmicity in these children, and these alterations in spontaneous brain oscillations were negatively correlated with visual-perceptual abilities at school-age, and were not driven by potentially confounding neonatal variables. These findings provide the first evidence linking neonatal pain-related stress, the development of functional brain activity, and school-age cognitive outcome in these vulnerable children.
-
Multicenter Study Comparative Study
How do children with autism spectrum disorders express pain? A comparison with developmentally delayed and typically developing children.
There is a lack of knowledge about pain reactions in children with autism spectrum disorders (ASD), who have often been considered as insensitive to pain. The objective of this study was to describe the facial, behavioral and physiological reactions of children with ASD during venipuncture and to compare them to the reactions of children with an intellectual disability and nonimpaired control children. We also examined the relation between developmental age and pain reactions. ⋯ Moreover, we observed a significant decrease in pain expression with age in nonimpaired children, but no such effect was found regarding children with ASD. The data reveal that children with ASD displayed a significant pain reaction in this situation and tend to recover more slowly after the painful experience. Improvement in pain assessment and management in this population is necessary.