Pain
-
The nociceptive transmission under pathological chronic pain conditions involves transcriptional and/or translational alteration in spinal neurotransmitters, receptor expressions, and modification of neuronal functions. Studies indicate the involvement of microRNA (miRNA) - mediated transcriptional deregulation in the pathophysiology of acute and chronic pain. In the present study, we tested the hypothesis that long-term cross-organ colonic hypersensitivity in neonatal zymosan-induced cystitis is due to miRNA-mediated posttranscriptional suppression of the developing spinal GABAergic system. ⋯ An increase in miR-181a concomitantly resulted in significant down-regulation of GABA(Aα-1) receptor subunit gene and protein expression in adult spinal cords from rats with neonatal cystitis. Intrathecal administration of the GABA(A) receptor agonist muscimol failed to attenuate the viscero-motor response (VMR) to colon distension in rats with neonatal cystitis, whereas in adult zymosan-treated rats the drug produced significant decrease in VMR. These results support an integral role for miRNA-mediated transcriptional deregulation of the GABAergic system in neonatal cystitis-induced chronic pelvic pain.
-
Comparative Study
Variability of "optimal" cut points for mild, moderate, and severe pain: neglected problems when comparing groups.
Defining cut points for mild, moderate, and severe pain intensity on the basis of differences in functional interference has an intuitive appeal. The statistical procedure to derive them proposed in 1995 by Serlin et al. has been widely used. Contrasting cut points between populations have been interpreted as meaningful differences between different chronic pain populations. ⋯ Optimal cut points are strongly influenced by random fluctuations within a sample. Differences in optimal cut points between study groups may be explained by chance variation; no other substantial explanation is required. Future studies that aim to interpret differences between groups need to include measures of variability for optimal cut points.