Pain
-
Large conductance calcium-activated potassium (BKCa) channels are important regulators of neuronal excitability. Although there is electrophysiological evidence for BKCa channel expression in sensory neurons, their in vivo functions in pain processing have not been fully defined. Using a specific antibody, we demonstrate here that BKCa channels are expressed in subpopulations of peptidergic and nonpeptidergic nociceptors. ⋯ However, their behavior in models of neuropathic or acute nociceptive pain was normal. Moreover, systemic administration of the BKCa channel opener, NS1619, inhibited persistent inflammatory pain. Our investigations provide in vivo evidence that BKCa channels expressed in sensory neurons exert inhibitory control on sensory input in inflammatory pain states.
-
The formalin test still surprises with its biphasic pain-related behavior resulting from a quiescent interphase that does not occur with other algogenic compounds and remains unexplained. The first phase has been attributed to TRPA1-mediated excitation of nociceptors, the second phase to their inflammatory and/or spinal sensitization. We show that the second and interphase require higher formaldehyde concentrations to emerge, and that from 12 mM on calcium influx is induced in TRPA1-deficient sensory neurons as well as in native HEK293T cells. ⋯ The parameters gained were entered into a computational model to predict the activation pattern of primary afferents. The model supports a peripherally generated biphasic response, the time course matching the behavioral results. In conclusion, the interphase is a result of hyperpolarization and transient inactivation by formaldehyde of the surviving neurons; their recovery and the centrifugal spread of formalin in the skin induce a second phase of nociceptive activity before the formalin concentration falls below threshold.