Pain
-
This study examines the effect of normal aging on temporal summation (TS) of pain and the nociceptive flexion reflex (RIII). Two groups of healthy volunteers, young and elderly, received transcutaneous electrical stimulation applied to the right sural nerve to assess pain and the nociceptive flexion reflex (RIII-reflex). ⋯ This study shows that robust TS of pain and RIII-reflex is observable in individuals aged between 18 and 75 years and indicates that these effects are comparable between young and older individuals. These results contrast with some previous findings and imply that at least some pain regulatory processes, including TS, may not be affected by normal aging, although this may vary depending on the method.
-
Cancer-induced bone pain is described as dull, aching ongoing pain. Ongoing bone cancer pain was characterized after intratibial injection of breast cancer cells in rats. Cancer produced time-dependent bone remodeling and tactile hypersensitivity but no spontaneous flinching. ⋯ Consistent with clinical experience, ongoing cancer pain was controlled by morphine but not by a dose of diclofenac that reversed evoked hypersensitivity. Additionally, the intrinsic reward of morphine can be dissociated from the reward of relief of cancer pain by blockade of rACC MOR. This approach allows mechanistic and therapeutic assessment of ongoing cancer pain with likely translation relevance.
-
Nuclear factor-kappa B (NF-κB) signaling is implicated in both cancer development and inflammation processes. However, the roles and mechanisms of NF-κB signaling in the development of cancer-induced pain (CIP) remain unknown. This study was designed to investigate the roles of the p65 subunit of NF-κB in regulation of the purinergic receptor (P2X3R) plasticity in dorsal root ganglion (DRG) of CIP rats. ⋯ Interestingly, tumor cell injection led to a significant demethylation of CpG island in p2x3r gene promoter and enhanced ability of p65 to bind the promoter of p2x3r gene. Our findings suggest that upregulation of P2X3R expression was mediated by the enhanced binding capability of p65 with demethylated promoter of p2x3r gene, thus contributing to CIP. NF-κBp65 might be a potential target for treating CIP, a neuropathic pain generated by tumor cell-induced injury to nerves that innervate the skin.