Pain
-
Elevated nerve growth factor (NGF) in the contralateral dorsal root ganglion (DRG) mediates mirror-image pain after peripheral nerve injury, but the underlying mechanism remains unclear. Using intrathecal injection of NGF antibodies, we found that NGF is required for the development of intra-DRG synapse-like structures made by neurite sprouts of calcitonin gene-related peptide (CGRP(+)) nociceptors and sympathetic axons onto neurite sprouts of Kv4.3(+) nociceptors. ⋯ Furthermore, neutralizing the neurotransmitter norepinephrine or CGRP in the synapse-like structures by antibodies has similar analgesic effect. Thus, elevated NGF after peripheral nerve injury induces neurite sprouting and the formation of synapse-like structures within the contralateral DRG, leading to the development of chronic mirror-image pain.
-
Glutamate serves as the primary excitatory neurotransmitter in the nervous system. Previous studies have identified a role for glutamate and group I metabotropic receptors as targets for study in peripheral inflammatory pain. However, the coordination of signaling events that transpire from receptor activation to afferent neuronal sensitization has not been explored. ⋯ In dissociated primary afferent neurons, mGluR5 activation increases TRPV1 responses in an AKAP-dependent manner through a mechanism that induces AKAP association with TRPV1. Experimental results presented herein identify a mechanism of receptor-driven scaffolding association with ion channel targets. Importantly, this mechanism could prove significant in the search for therapeutic targets that repress episodes of acute pain from becoming chronic in nature.
-
Randomized Controlled Trial
High altitude headache: the effects of real versus sham oxygen administration.
High-altitude, or hypobaric hypoxia, headache has recently emerged as an interesting model to study placebo and nocebo responses, and particularly their peripheral mechanisms. In this study, we analyze the response of this type of headache to either real or sham (placebo) oxygen (O(2)) administration at an altitude of 3500 m, where blood oxygen saturation (SO(2)) drops from the normal value of about 98% to about 85%. In a trial in which a double-blind administration of either 100% O(2) or sham O(2) was administered, we tested pre- and post-exercise headache, along with fatigue, heart rate (HR) responses, and prostaglandin E(2) (PGE(2)) salivary concentration. ⋯ First, placebo O(2) is effective in reducing post-exercise headache, along with HR and PGE(2) decrease, only after O(2) preconditioning. Second, pre-exercise (at rest) headache is not affected by placebo O(2), which emphasizes the limits of a placebo treatment at high altitude. Third, fatigue is affected by placebo O(2) even without prior O(2) conditioning, which suggests the higher placebo sensitivity of fatigue compared with headache pain at high altitude.
-
Meta Analysis
Decreased Pain Sensitivity Among People with Schizophrenia: A Meta-analysis of Experimental Pain Induction Studies.
Patients with schizophrenia report reduced pain sensitivity in clinical studies, but experimental studies are required to establish pain sensitivity as a potential endophenotype. We conducted a systematic review of electronic databases from database inception until April 15, 2015, including experimental studies investigating pain among patients with schizophrenia spectrum disorder vs healthy controls. A random-effect meta-analysis yielding Hedges' g ±95% confidence intervals (CIs) as the effect size (ES) measure was conducted. ⋯ Finally, greater psychiatric symptoms moderated increased pain threshold, and younger patient age moderated increased pain tolerance. Decreased pain sensitivity seems to be an endophenotype of schizophrenia spectrum disorders. How this alteration links to other dimensions of schizophrenia and physical comorbidity-related help-seeking behaviour/morbidity/mortality requires further study.