Pain
-
Children's memories for pain play a powerful role in their pain experiences. Parents' memories may also influence children's pain experiences, by influencing parent-child interactions about pain and children's cognitions and behaviors. Pain catastrophizing of children and parents has been implicated as a factor underlying memory biases; however, this has not been empirically examined. ⋯ Although parent catastrophizing had a direct effect on pain memories, mediation analyses revealed that child catastrophizing (helplessness) indirectly influenced children's and parents' pain memories through the child's postoperative pain experience. Findings highlight that aspects of catastrophic thinking about child pain before surgery are linked to distressing pain memories several months later. Although both child and parent catastrophizing influence pain memory development, parent catastrophizing is most influential to both children's and parents' evolving cognitions about child pain.
-
The pharmacological inhibition of anandamide (AEA) hydrolysis by fatty acid amide hydrolase (FAAH) attenuates pain in animal models of osteoarthritis (OA) but has failed in clinical trials. This may have occurred because AEA also activates transient receptor potential vanilloid type 1 (TRPV1), which contributes to pain development. Therefore, we investigated the effectiveness of the dual FAAH-TRPV1 blocker OMDM-198 in an MIA-model of osteoarthritic pain. ⋯ OMDM-198 showed antihyperalgesic effects in the OA model, which were comparable with those of a selective TRPV1 antagonist, SB-366,791, and a selective FAAH inhibitor, URB-597. The effect of OMDM-198 was attenuated by the CB1 receptor antagonist, AM-251, and by the nonpungent TRPV1 agonist, olvanil, suggesting its action as an "indirect" CB1 agonist and TRPV1 antagonist. These results suggest an innovative strategy for the treatment of OA, which may yield more satisfactory results than those obtained so far with selective FAAH inhibitors in human OA.
-
OnabotulinumtoxinA (onabotA) has shown efficacy in chronic migraine (CM). Its mechanism of action, however, remains obscure. We have analysed whether treatment with onabotA is able to induce changes in interictal plasma calcitonin gene-related peptide (CGRP) concentrations, which have been shown to be increased in patients with CM. ⋯ One month after treatment, the CGRP levels did not change in nonresponders (51.89 pg/mL; P not significant), but significantly decreased in responders (52.48 pg/mL; P = 0.003). A number of demographic factors, clinical features, and comorbidities were not different in responders as compared with those of nonresponders. These results confirm that interictal CGRP levels can be of help in predicting the response to onabotA and suggest that the mechanism of action of onabotA in CM is the reversal of sensitization as a result of the inhibition of CGRP release.
-
Chronic dry eye disease (DE) is associated with an unstable tear film and symptoms of ocular discomfort. The characteristics of symptoms suggest a key role for central neural processing; however, little is known about central neuroplasticity and DE. We used a model for tear deficient DE and assessed effects on eye blink behavior, orbicularis oculi muscle activity (OOemg), and trigeminal brainstem neural activity in male rats. ⋯ Synaptic blockade at the Vi/Vc transition or the Vc/C1 region greatly reduced hypertonic saline-evoked OOemg activity in DE and sham rats. These results indicated that persistent tear deficiency caused sensitization of ocular-responsive neurons at multiple regions of the caudal trigeminal brainstem and enhanced OOemg activity. Central sensitization of ocular-related brainstem circuits is a significant factor in DE and likely contributes to the apparent weak correlation between peripheral signs of tear dysfunction and symptoms of irritation.
-
Comparative Study
Disease-Related Differences in Resting State Networks: A Comparison between Localized Provoked Vulvodynia, Irritable Bowel Syndrome, and Healthy Control Subjects.
Localized provoked vulvodynia (LPVD) affects approximately 16% of the female population, but biological mechanisms underlying symptoms remain unknown. Like in other often comorbid chronic pain disorders, altered sensory processing and modulation of pain, including central sensitization, dysregulation of endogenous pain modulatory systems, and attentional enhancement of pain perception, have been implicated. The aim of this study was to test whether regions of interest showing differences in LPVD compared to healthy control subjects (HCs) in structural and evoked-pain neuroimaging studies, also show alterations during rest when compared with HCs and a chronic pain control group (irritable bowel syndrome [IBS]). ⋯ Findings were robust to controlling for affect and medication usage. The current findings indicate that subjects with LPVD have alterations in the intrinsic connectivity of regions comprising the sensorimotor, salience, and default mode networks. Although shared brain mechanisms between different chronic pain disorders have been postulated, the current findings suggest that some alterations in functional connectivity may show disease specificity.