Pain
-
Small-fiber neuropathy (SFN) is hallmarked by degeneration of small unmyelinated peripheral nerve fibers in the skin. Traditionally, it has been considered as a pure disorder of the peripheral nervous system. Nevertheless, previous work found that dysfunction of skin nerves led to abnormal recruitment of pain-related regions, suggesting that the brain may be affected in SFN. ⋯ Moreover, the degree of reduction in functional connectivity for the ACC to the amygdala and the precuneus was linearly correlated with the severity of intraepidermal nerve fiber depletion. Our findings suggest that SFN is not a pure peripheral nervous system disorder. The pain-related brain networks tend to break into functionally independent components, with severity linked to the degree of skin nerve degeneration.
-
Racial differences in pain responsiveness have been demonstrated in adults. However, it is unclear whether racial differences are also present in youth and whether they extend to experimental pain indices assessing temporal summation of second pain (TSSP). Temporal summation of second pain provides an index of pain sensitivity and may be especially relevant in determining risk for chronic pain. ⋯ Baseline evoked pain ratings were significantly higher in African-American compared with non-Hispanic white youth. These findings suggest that enhanced responsiveness to evoked thermal pain in African Americans is present in adolescence but is unlikely to be related to elevated TSSP. These results may have implications for understanding racial differences in chronic pain experience in adulthood.
-
TRPV1 is a nociceptive ion channel activated by polymodal stimuli such as capsaicin, proton, and noxious heat. Multiple inflammatory mediators activate protein kinases, especially protein kinase C (PKC), which phosphorylates TRPV1. Emerging evidence suggests that phosphorylation of TRPV1 constitutes specific signals underpinning pathological nociception. ⋯ Moreover, bradykinin-induced hypersensitivity to capsaicin was largely attenuated by the S800A mutation. These results suggest that mechanisms of PKC-induced hypersensitivity of TRPV1 are modality specific and that S800 is a polymodal sensitization site integrating multiple inflammatory signals in nociceptors. Our data provide a rationale for a novel approach targeting TRPV1 S800 for antihyperalgesia.
-
Chronic dry eye disease (DE) is associated with an unstable tear film and symptoms of ocular discomfort. The characteristics of symptoms suggest a key role for central neural processing; however, little is known about central neuroplasticity and DE. We used a model for tear deficient DE and assessed effects on eye blink behavior, orbicularis oculi muscle activity (OOemg), and trigeminal brainstem neural activity in male rats. ⋯ Synaptic blockade at the Vi/Vc transition or the Vc/C1 region greatly reduced hypertonic saline-evoked OOemg activity in DE and sham rats. These results indicated that persistent tear deficiency caused sensitization of ocular-responsive neurons at multiple regions of the caudal trigeminal brainstem and enhanced OOemg activity. Central sensitization of ocular-related brainstem circuits is a significant factor in DE and likely contributes to the apparent weak correlation between peripheral signs of tear dysfunction and symptoms of irritation.