Pain
-
Randomized Controlled Trial
Open-label placebo treatment in chronic low back pain: a randomized controlled trial.
This randomized controlled trial was performed to investigate whether placebo effects in chronic low back pain could be harnessed ethically by adding open-label placebo (OLP) treatment to treatment as usual (TAU) for 3 weeks. Pain severity was assessed on three 0- to 10-point Numeric Rating Scales, scoring maximum pain, minimum pain, and usual pain, and a composite, primary outcome, total pain score. Our other primary outcome was back-related dysfunction, assessed on the Roland-Morris Disability Questionnaire. ⋯ Improvement in disability scores was 2.9 (1.7-4.0) in the OLP group and 0.0 (-1.1 to 1.2) in the TAU group. After being switched to OLP, the TAU group showed significant reductions in both pain (1.5, 0.8-2.3) and disability (3.4, 2.2-4.5). Our findings suggest that OLP pills presented in a positive context may be helpful in chronic low back pain.
-
Low back pain has a life time prevalence of 70% to 85%. Approximately 10% to 20% of all patients experience recurrent episodes or develop chronic low back pain. Sociodemographic, clinical, and psychological characteristics explain the transition from acute to chronic low back pain only to a limited extent. ⋯ We included 214 patients with either acute or chronic low back pain and compared RRF between groups in both univariable and multivariable analyses adjusted for different sociodemographic and clinical characteristics possibly associated with the transition to chronic pain. We found a mean difference between patients with acute and chronic low back pain of -0.01 (95% confidence interval [CI], -0.06 to 0.04) in the crude, -0.02 (95% CI, -0.08 to 0.04) in the age and sex adjusted, and -0.02 (95% CI, -0.09 to 0.05) in the fully adjusted model. Our results suggest that the enlargement of RRF area may not be associated with the transition from acute to chronic low back pain.
-
We compared patterns of intraepidermal nerve fibers and mechanoreceptors from affected and unaffected plantar skin from patients with pachyonychia congenita (PC) and control subjects. Plantar biopsies from 10 genetically confirmed patients with PC (with a mutation in KRT6A) were performed at the ball of the foot (affected skin) and the arch (unaffected) and were compared to biopsies from corresponding locations in 10 control subjects. Tissue was processed to visualize intraepidermal nerve fibers (IENF) (PGP9.5), subsets of IENF (CGRP, substance P, tyrosine hydroxylase), myelinated nerve fiber (neurofilament H, NFH), blood vessels (CD31), Meissner corpuscles, and Merkel cells (MCs). ⋯ Pressure pain thresholds in PC-affected skin were lower compared to PC-unaffected and anatomically matched control skin. Additionally, MC densities in callused plantar skin from healthy runners with callus and one subject with a nonpainful palmoplantar keratoderma (AQP5 mutation) were similar to PC-unaffected and control skin consistent with callus alone not being sufficient to increase MC number. These findings suggest that alterations in PC extend beyond keratinocytes and may provide strategies to study neuropathic pain in PC.
-
Pain is one of the most challenging and stressful conditions to patients with sickle cell disease (SCD) and their clinicians. Patients with SCD start experiencing pain as early as 3 months old and continue having it throughout their lives. Although many aspects of the disease are well understood, little progress has been made in understanding and treating pain in SCD. ⋯ We further targeted CaMKIIα by siRNA knockdown. Both evoked pain and ongoing spontaneous pain were effectively attenuated in BERK mice. These findings elucidated, for the first time, an essential role of CaMKIIα as a cellular mechanism in the development and maintenance of spontaneous and evoked pain in SCD, which can potentially offer new targets for pharmacological intervention of pain in SCD.
-
The rostral ventromedial medulla (RVM) has a well-documented role in pain modulation and exerts antinociceptive and pronociceptive influences mediated by 2 distinct classes of neurons, OFF-cells and ON-cells. OFF-cells are defined by a sudden pause in firing in response to nociceptive inputs, whereas ON-cells are characterized by a "burst" of activity. Although these reflex-related changes in ON- and OFF-cell firing are critical to their pain-modulating function, the pathways mediating these responses have not been identified. ⋯ Few of these neurons expressed calcitonin gene-related peptide, suggesting that the RVM projection from PB is distinct from that to the amygdala. These data show that a substantial component of "bottom-up" nociceptive drive to RVM pain-modulating neurons is relayed through the PB. While the PB is well known as an important relay for ascending nociceptive information, its functional connection with the RVM allows the spinoparabrachial pathway to access descending control systems as part of a recurrent circuit.