Pain
-
Randomized Controlled Trial Clinical Trial
Reduction of chronic abdominal pain in patients with inflammatory bowel disease via transcranial direct current stimulation: a randomized controlled trial.
Inflammatory bowel disease (IBD) is frequently associated with chronic abdominal pain (CAP). Transcranial direct current stimulation (tDCS) has been proven to reduce chronic pain. This study aimed to investigate the effects of tDCS in patients with CAP due to IBD. ⋯ Inflammatory markers and disease activity did not differ significantly between groups throughout the experiment. Transcranial direct current stimulation proved to be an effective and clinically relevant therapeutic strategy for CAP in IBD. The analgesic effects observed are unrelated to inflammation and disease activity, which emphasizes central pain mechanisms in CAP.
-
The research of new therapeutic strategies for neuropathic pain represents a major current priority. Important drawbacks to advance in the development of these therapies are the limited translational value of the animal models now available and the elucidation of the complex neuronal and immune pathophysiological mechanisms underlying neuropathic pain. One of the neurotransmitter systems participating in neuropathic pain control that has recently raised a particular interest is the endocannabinoid system. ⋯ Several clinical studies suggest that cannabinoids significantly reduced neuropathic pain, although most of these trials fail the required standards of quality. The different pain patient populations included in the systematic reviews also make it difficult to get adequate conclusions. Therefore, additional clinical trials that consider an adequate number of patients, the use active treatments as controls, and longer duration of administration are required to have an adequate profile of the effectiveness and safety of cannabinoids in neuropathic pain.
-
Among many mechanisms implicated in the development of neuropathic pain after nerve damage is a profound dysfunction of GABAergic inhibitory controls, manifested by ongoing pain, mechanical hypersensitivity, and thermal hyperalgesia. In some respects, neuropathic pain can be considered a "disease" of the nervous system, with features in common with trauma-induced seizures. Indeed, first-line management involves anticonvulsant therapy. ⋯ In related studies, we demonstrated that medial ganglionic eminence cell transplants are also effective in a chronic neuropathic itch model in which there is a significant loss of dorsal horn inhibitory interneurons. Most importantly, in contrast to systemic or intrathecal pharmacological therapies, adverse side effects are minimized when the inhibitory control, namely, γ-aminobutyric acid release, occurs in a spinal cord circuit. These studies suggest that therapy targeted at repairing the GABAergic dysfunction is a viable and novel alternative to the management of neuropathic pain and itch, particularly those that are or become refractory to traditional pharmacotherapy.
-
Brain responses to nociception are well identified. The same is not true for allodynic pain, a strong painful sensation in response to touch or innocuous cold stimuli that may be experienced by patients with neuropathic pain. Brain (or spinal cord) reorganization that may explain this paradoxical perception still remains largely unknown. ⋯ Both thalamic function and structure have been reported to be abnormal or impaired in neuropathic pain conditions including in the basal state, possibly explaining the spontaneous component of neuropathic pain. A further indication as to how the brain can create neuropathic pain response in SII and insular cortices stems from examples of diseases, including single-case reports in whom a focal brain lesion leads to central pain disappearance. Additional studies are required to certify the contribution of these areas to the disease processes, to disentangle abnormalities respectively related to pain and to deafferentation, and, in the future, to guide targeting of stimulation studies.
-
Small fiber neuropathies (SFNs) are a subgroup of sensory neuropathies that almost exclusively affect thinly myelinated A-delta or unmyelinated C-nerve fibers. Patients with SFN typically report acral burning pain, paresthesias, and dysesthesias, and sometimes itch manifesting particularly at toes and feet. ⋯ The diversity in clinical presentation, however, already implies that different pathophysiological mechanisms underlie small nerve fiber degeneration and regeneration in these disorders. This review aims at presenting current knowledge on small nerve fiber research and at intensifying the awareness for SFN vs small fiber pathology as a chance to learn about small nerve fiber pathophysiology.