Pain
-
Animal models suggest that chemokines are important mediators in the pathophysiology of neuropathic pain. Indeed, these substances have been called "gliotransmitters," a term that illustrates the close interplay between glial cells and neurons in the context of neuroinflammation and pain. However, evidence in humans is scarce. ⋯ These 6 proteins were also major results in a recent similar study in patients with fibromyalgia. The findings need to be confirmed in larger cohorts, and the question of causality remains to be settled. Because it has been suggested that prevalent comorbidities to chronic pain (eg, depression, anxiety, poor sleep, and tiredness) also are associated with neuroinflammation, it will be important to determine whether neuroinflammation is a common mediator.
-
Primary C-fiber nociceptors are broadly divided into peptidergic and nonpeptidergic afferents. TRPV1 is a thermosensitive cation channel mainly localized in peptidergic nociceptors, whereas MrgD is a sensory G protein-coupled receptor expressed in most nonpeptidergic nociceptive afferents. TRPV1 and MrgD fibers have been reported to be primarily involved in thermal and mechanical nociception, respectively. ⋯ Of interest, in a conditioned place avoidance assay, blue light induced aversion in TRPV1-ChR2 mice, but not in MrgD-ChR2 mice. In short, we present novel somatosensory transgenic models in which control of specific subsets of peripheral unmyelinated nociceptors with distinct functions can be achieved with high spatiotemporal precision. These new tools will be instrumental in further clarifying the contribution of genetically identified C-fiber subtypes to chronic pain.