Pain
-
Gabapentin (GBP) is a first-line therapy for neuropathic pain, but its mechanisms and sites of action remain uncertain. We investigated GBP-induced modulation of neuropathic pain following spinal nerve ligation (SNL) in rats. Intravenous or intrathecal GBP reversed evoked mechanical hypersensitivity and produced conditioned place preference (CPP) and dopamine (DA) release in the nucleus accumbens (NAc) selectively in SNL rats. ⋯ Gabapentin, therefore, can potentially act to produce its pain relieving effects by (a) inhibition of injury-induced spinal neuronal excitability, evoked hypersensitivity, and ongoing pain and (b) selective supraspinal modulation of affective qualities of pain, without alteration of reflexive behaviors. Consistent with previous findings of pain relief from nonopioid analgesics, GBP requires engagement of rACC endogenous opioid circuits and downstream activation of mesolimbic reward circuits reflected in learned pain-motivated behaviors. These findings support the partial separation of sensory and affective dimensions of pain in this experimental model and suggest that modulation of affective-motivational qualities of pain may be the preferential mechanism of GBP's analgesic effects in patients.
-
The mu opioid receptor (MOR) and metabotropic glutamate receptor 5 (mGluR5) are well-established pharmacological targets in the management of chronic pain. Both receptors are expressed in the spinal cord. MMG22, a bivalent ligand containing 2 pharmacophores separated by 22 atoms, which simultaneously activates MOR and antagonizes mGluR5, has been shown to produce potent reversal of tactile hypersensitivity in rodent models of lipopolysaccharide (LPS)-and bone cancer-induced chronic pain. ⋯ Coadministration of oxymorphone and MPEP demonstrated analgesic synergism, an interaction confirmed by isobolographic analysis. This study indicates that in the spared nerve injury-induced model of neuropathic pain, the 2 pharmacophores of the bivalent ligands MMG22 and MMG10 target MOR and mGluR5 as separate receptor monomers. The observed increase in the potency of MMG22 and MMG10, compared with oxymorphone and MPEP, may reflect the synergistic interaction of the 2 pharmacophores of the bivalent ligand acting at their respective separate receptor monomers.
-
It has been proposed that complex regional pain syndrome (CRPS) is a posttraumatic autoimmune disease, and we previously observed that B cells are required for the full expression of CRPS-like changes in a mouse tibia fracture CRPS model. The current study used the mouse model to evaluate the progression of postfracture CRPS-like changes in wild-type (WT) and muMT fracture mice lacking B cells and antibodies. The pronociceptive effects of injecting WT fracture mouse serum antibodies into muMT fracture mice were also evaluated. ⋯ Immunohistochemistry localized postfracture IgM antibody binding to antigens in the fracture limb hind paw dermal cell nuclei. We postulate that fracture induces expression of neoantigens in the fracture limb skin, sciatic nerve, and cord, which trigger B cells to secret IgM antibodies that bind those antigens and initiate a pronociceptive antibody response. Autoimmunity plays a key role in the progression of nociceptive and vascular changes in the mouse fracture model and potentially contributes to the CRPS disease process.
-
Neuroplasticity in the amygdala, a brain center for emotions, leads to increased neuronal activity and output that can generate emotional-affective behaviors and modulate nocifensive responses. Mechanisms of increased activity in the amygdala output region (central nucleus, CeA) include increased reactive oxygen species, and so we explored beneficial effects of monomethyl fumarate (MMF), which can have neuroprotective effects through the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) antioxidant response pathway. Systemic (intraperitoneal) MMF dose-dependently inhibited vocalizations and mechanosensitivity (hindlimb withdrawal reflexes) of rats in an arthritis pain model (kaolin-carrageenan-induced monoarthritis in the knee). ⋯ Extracellular single-unit recordings of CeA neurons in anesthetized rats showed that stereotaxic administration of MMF into the CeA by microdialysis inhibited background activity and responses of CeA neurons to knee joint stimulation in the arthritis pain model. Monomethyl fumarate had no effect on behaviors and neuronal activity under normal conditions. The results suggest that MMF can inhibit emotional-affective responses in an arthritis pain model through an action that involves the amygdala (CeA).