Pain
-
Breathing techniques are commonly used to alleviate pain. Despite their frequent use, surprisingly little is known about their efficacy as well as their underlying physiological mechanisms. The purpose of this systematic review is to summarize and critically appraise the results of existing studies on the association between respiration and pain, and to highlight a potential physiological mechanism underlying the respiration-pain connection. ⋯ Furthermore, paced slow breathing is associated with pain reduction in some of the studies, but evidence elucidating the underlying physiological mechanisms of this effect is lacking. Here, we focus on the potential role of the cardiovascular system on the respiratory modulation of pain. Further research is definitely warranted.
-
Spatial summation of pain (SSP) is the increase of perceived intensity that occurs as the stimulated area increases. Spatial summation of pain is subadditive in that increasing the stimulus area produces a disproportionately small increase in the perceived intensity of pain. A possible explanation for subadditive summation may be that convergent excitatory information is modulated by lateral inhibition. ⋯ Thus, the stimulation of the skin region between the endpoints of the lines appears to produce inhibition. These findings indicate that lateral inhibition limits SSP and is an intrinsic component of nociceptive information processing. Disruption of such lateral inhibition may contribute substantially to the radiation of some types of chronic pain.
-
Opioids are the gold standard for pharmacological treatment of neuropathic pain, but their analgesic effects are unsatisfactory in part due to nerve injury-induced downregulation of opioid receptors in dorsal root ganglia (DRG) neurons. How nerve injury drives such downregulation remains elusive. DNA methyltransferase (DNMT)-triggered DNA methylation represses gene expression. ⋯ Mechanistically, DNMT3a regulation of Oprm1 gene expression required the methyl-CpG-binding protein 1, MBD1, as MBD1 knockout resulted in the decreased binding of DNMT3a to the Oprm1 gene promoter and blocked the DNMT3a-triggered repression of Oprm1 gene expression in DRG neurons. These data suggest that DNMT3a is required for nerve injury-induced and MBD1-mediated epigenetic silencing of the MOR and KOR in the injured DRG. DNMT3a inhibition may serve as a promising adjuvant therapy for opioid use in neuropathic pain management.