Pain
-
Although motor cortex stimulation (MCS) is being increasingly used to treat chronic refractory neuropathic pain in humans, its mechanisms of action remain elusive. Studies in animals have suggested the involvement of subcortical structures, in particular, the thalamus. Most of these studies have been performed in rats, a species presenting significant differences in thalamic anatomy and function relative to primates, in particular, a very limited number of thalamic GABA interneurons. ⋯ After peripheral stimulation, evoked activity in each cell showed MCS effects similar to those observed in spontaneous activity. These data demonstrate a selective top-down inhibition by MCS of nonspecific nociceptive (WDR) cells, enhanced by somatotopic concordance and stimulation repetition, in parallel to facilitation of NN cells. These 2 outcomes may play a role in the complex analgesic effect of MCS observed in neuropathic pain conditions.
-
Recording oscillatory brain activity holds great promise in pain research. However, experimental results are variable and often difficult to reconcile. Some of these inconsistencies arise from the use of hypothesis-driven analysis approaches that (1) do not assess the consistency of the observed responses within and across individuals, and (2) do not fully exploit information sampled across the entire cortex. ⋯ All responses except the δ/θ-ERD correlated with pain-related behavior at within-subject level. Notably, the gamma-band event-related synchronization was the only response that reliably correlated with pain-related behavior between subjects. These results comprehensively characterize the physiological properties of the brain oscillations elicited by nociceptive stimuli in freely moving rodents and provide a foundational work to improve the translation of experimental animal findings to human physiology and pathophysiology.