Pain
-
Multicenter Study
CACNG2 polymorphisms associate with chronic pain following mastectomy.
Chronic postmastectomy pain (PMP) imposes a major burden on the quality of life of the ever-increasing number of long-term survivors of breast cancer. An earlier report by Nissenbaum et al. claimed that particular polymorphisms in the gene CACNG2 are associated with the risk of developing chronic PMP after breast surgery (Nissenbaum J, Devor M, Seltzer Z, Gebauer M, Michaelis M, Tal M, Dorfman R, Abitbul-Yarkoni M, Lu Y, Elahipanah T, delCanho S, Minert A, Fried K, Persson AK, Shpigler H, Shabo E, Yakir B, Pisante A, Darvasi A. Susceptibility to chronic pain following nerve injury is genetically affected by CACNG2. ⋯ We found that the biomarker is selective because it did not predict pain after laparoscopic hernia repair and was not associated with pain sensitivity to experimentally applied noxious thermal stimuli. We conclude that the A-C-C haplotype at the 3 single-nucleotide polymorphisms (rs4820242, rs2284015, and rs2284017) in the CACNG2 gene is associated with increased risk of developing PMP. This information may advance current knowledge on pathophysiology of PMP and serve as a step forward in the prediction of clinical outcomes and personalized pain management.
-
The complement system significantly contributes to the development of inflammatory and neuropathic pain, but the underlying mechanisms are poorly understood. Recently, we identified the signaling pathway responsible for thermal hypersensitivity induced by the complement system component C5a. Here, we examine the mechanisms of another important action of C5a, induction of mechanical hypersensitivity. ⋯ Indeed, pretreatment with a calcitonin gene-related peptide (CGRP) receptor antagonist (but not an antagonist of the neurokinin 1 receptor) prevented C5a-induced mechanical sensitization. Furthermore, intraplantar injection of CGRP produced significant mechanical sensitization in both wild-type and TRPV1 knockout mice. Taken together, these findings suggest that C5a produces mechanical sensitization by initiating macrophage-to-sensory-neuron signaling cascade that involves activation of TRPV1 and CGRP receptor as critical steps in this process.
-
Painful and disabling musculoskeletal disorders remain prevalent. In rats trained to perform repetitive tasks leading to signs and dysfunction similar to those in humans, we tested whether manual therapy would prevent the development of the pathologies and symptoms. We collected behavioral, electrophysiological, and histological data from control rats, rats that trained for 5 weeks before performing a high-repetition high-force (HRHF) task for 3 weeks untreated, and trained rats that performed the task for 3 weeks while being treated 3x/week using modeled manual therapy (MMT) to the forearm (HRHF + MMT). ⋯ Neurons from HRHF rats had a heightened proportion of ongoing activity and altered conduction velocities compared with control and MMT-treated rats. Median nerve branches in HRHF rats contained increased numbers of CD68 macrophages and degraded myelin basic protein, and showed increased extraneural collagen deposition, compared with the other groups. We conclude that the performance of the task for 3 weeks leads to increased ongoing activity in nociceptors, in parallel with behavioral and histological signs of neuritis and nerve injury, and that these pathophysiologies are largely prevented by MMT.
-
Painful peripheral neuropathy is a dose-limiting side effect of cisplatin treatment. Using a murine model of cisplatin-induced hyperalgesia, we determined whether a PPARγ synthetic agonist, pioglitazone, attenuated the development of neuropathic pain and identified underlying mechanisms. Cisplatin produced mechanical and cold hyperalgesia and decreased electrical thresholds of Aδ and C fibers, which were attenuated by coadministration of pioglitazone (10 mg/kg, intraperitoneally [i.p.]) with cisplatin. ⋯ Oxidative stress in DRG neurons was considered a significant contributor to cisplatin-evoked hyperalgesia because a ROS scavenger attenuated hyperalgesia and normalized the evoked calcium responses when cotreated with cisplatin. Pioglitazone increased the expression and activity of ROS-reducing enzymes in DRG and normalized cisplatin-evoked changes in oxidative stress and labeling of mitochondria with the dye MitoTracker Deep Red, indicating that the antihyperalgesic effects of pioglitazone were attributed to its antioxidant properties in DRG neurons. These data demonstrate clear benefits of broadening the use of the antidiabetic drug pioglitazone, or other PPARγ agonists, to minimize the development of cisplatin-induced painful neuropathy.
-
Anxiety and depression are associated with increased pain responses in chronic pain states. The extent to which anxiety drives chronic pain, or vice versa, remains an important question that has implications for analgesic treatment strategies. Here, the effect of existing anxiety on future osteoarthritis (OA) pain was investigated, and potential mechanisms were studied in an animal model. ⋯ Similarly, WKY rats developed significantly lower ipsilateral and contralateral hind paw withdrawal thresholds in the monosodium iodoacetate model of OA pain, compared with SD rats (P = 0.0005). Linear regressions revealed that baseline anxiety-like behaviour was predictive of lowered paw withdrawal thresholds in WKY rats, mirroring the human data. This augmented pain phenotype was significantly associated with increased glial fibrillary acidic protein immunofluorescence in pain-associated brain regions, identifying supraspinal astrocyte activation as a significant mechanism underlying anxiety-augmented pain behaviour.