Pain
-
Randomized Controlled Trial
The association between endogenous opioid function and morphine responsiveness: a moderating role for endocannabinoids.
We sought to replicate previous findings that low endogenous opioid (EO) function predicts greater morphine analgesia and extended these findings by examining whether circulating endocannabinoids and related lipids moderate EO-related predictive effects. Individuals with chronic low-back pain (n = 46) provided blood samples for endocannabinoid analyses, then underwent separate identical laboratory sessions under 3 drug conditions: saline placebo, intravenous (i.v.) naloxone (opioid antagonist; 12-mg total), and i.v. morphine (0.09-mg/kg total). During each session, participants rated low-back pain intensity, evoked heat pain intensity, and nonpain subjective effects 4 times in sequence after incremental drug dosing. ⋯ In the absence of significant interactions, lower EO function predicted significantly greater morphine analgesia (as in past work) and euphoria. Results indicate that EO effects on analgesic and subjective responses to opioid medications are greatest when endocannabinoid levels are low. These findings may help guide development of mechanism-based predictors for personalized pain medicine algorithms.
-
To develop a machine learning model to investigate the discriminative power of whole-brain gray-matter (GM) images derived from primary dysmenorrhea (PDM) women and healthy controls (HCs) during the pain-free phase and further evaluate the predictive ability of contributing features in predicting the variance in menstrual pain intensity. Sixty patients with PDM and 54 matched female HCs were recruited from the local university. All participants underwent the head and pelvic magnetic resonance imaging scans to calculate GM volume and myometrium-apparent diffusion coefficient (ADC) during their periovulatory phase. ⋯ In the regression analysis, demographical indicators and myometrium ADC accounted for a total of 29.37% of the variance in pain intensity. After regressing out these factors, GM features explained 60.33% of the remaining variance. Our results suggested that GM volume can be used to discriminate patients with PDM and HCs during the pain-free phase, and neuroimaging features can further predict the variance in the intensity of menstrual pain, which may provide a potential imaging marker for the assessment of menstrual pain intervention.
-
Bone cancer metastasis is extremely painful and decreases the quality of life of the affected patients. Available pharmacological treatments are not able to sufficiently ameliorate the pain, and as patients with cancer are living longer, new treatments for pain management are needed. Decitabine (5-aza-2'-deoxycytidine), a DNA methyltransferases inhibitor, has analgesic properties in preclinical models of postsurgical and soft-tissue oral cancer pain by inducing an upregulation of endogenous opioids. ⋯ Indeed, Ednrb was hypermethylated and transcriptionally silenced in the mouse model of bone cancer pain. We demonstrated that expression of Ednrb in the cancer cells lead to release of β-endorphin in the cell supernatant, which reduced the number of responsive dorsal root ganglia neurons in an opioid-dependent manner. Our study supports a role of demethylating drugs, such as decitabine, as unique pharmacological agents targeting the pain in the cancer microenvironment.
-
Integration of nociceptive information is essential to produce adapted responses, to promote body integrity and survival. However, how the brain integrates nociceptive inputs from different body areas remains unknown. The aim of this study was to examine the cortical integration of bilateral nociceptive inputs evoked by laser heat stimuli. ⋯ By contrast, pain was not significantly different in any condition (P > 0.05). These findings show that although more nociceptive inputs reach the brain with multiple nociceptive stimuli, their sensory representation is decreased while pain perception remains unchanged. These interactions between cerebral processing of nociceptive information from different body regions could support coordinated behavioral responses when pain origins from multiple sources.