Pain
-
Cancer invading into nerves, termed perineural invasion (PNI), is associated with pain. Here, we show that oral cancer patients with PNI report greater spontaneous pain and mechanical allodynia compared with patients without PNI, suggesting that unique mechanisms drive PNI-induced pain. We studied the impact of PNI on peripheral nerve physiology and anatomy using a murine sciatic nerve PNI model. ⋯ Perineural invasion resulted in nerve damage, including axon loss, myelin damage, and axon degeneration. Electrophysiological evidence of nerve injury included decreased conduction velocity, and increased percentage of both mechanically insensitive and electrically unexcitable neurons. We conclude that PNI-induced pain is driven by nerve injury and peripheral sensitization in HTMRs.
-
Children diagnosed with Christianson syndrome (CS), a rare X-linked neurodevelopmental disorder characterized by intellectual disability, epilepsy, ataxia, and mutism, also suffer from hyposensitivity to pain. This places them at risk of sustaining serious injuries that often go unattended. Christianson syndrome is caused by mutations in the alkali cation/proton exchanger SLC9A6/NHE6 that regulates recycling endosomal pH homeostasis and trafficking. ⋯ Behaviourally, Nhe6 KO mice have decreased nocifensive responses to acute noxious thermal, mechanical, and chemical (ie, capsaicin) stimuli. The reduced capsaicin sensitivity in the KO mice correlates with a decreased expression of the transient receptor potential channel TRPV1 at the plasma membrane and capsaicin-induced Ca influx in primary cultures of nociceptors. These data indicate that NHE6 is a significant determinant of nociceptor function and pain behaviours, vital sensory processes that are impaired in CS.
-
Because treatment for postsurgical pain (PSP) remains a major unmet medical need, the emergence of safe and innovative nonopioid drugs has been strongly coveted. Tetrahydrobiopterin (BH4) is an interesting molecule for gaining a better understanding the pathological mechanism of neuropathic pain. However, whether BH4 and its pathway are involved in the pathogenesis of PSP remains unclear. ⋯ Furthermore, QM385, the SPR inhibitor, showed a significant dose-dependent, antinociceptive effect, which was supported by a reduction in BH4 levels in incised skin tissues, with no apparent adverse effects. Immunohistochemical analysis demonstrated that macrophages expressing GTPCH protein were increased around the injury site in the rat paw incision model. These results indicate that BH4 is involved in the pathogenesis of PSP, and that inhibition of the BH4 pathway could provide a new strategy for the treatment of acute PSP.