Pain
-
Most studies of diabetic polyneuropathy (DPN) and painful DPN are conducted in persons with longstanding diabetes. This cross-sectional study aimed to estimate the prevalence of DPN and painful DPN, important risk factors, and the association with mental health in recently diagnosed type 2 diabetes. A total of 5514 (82%) patients (median diabetes duration 4.6 years) enrolled in the Danish Centre for Strategic Research in Type 2 Diabetes cohort responded to a detailed questionnaire on neuropathy and pain. ⋯ Possible DPN and painful DPN were independently and additively associated with lower quality of life, poorer sleep, and symptoms of depression and anxiety. Possible DPN itself had greater impact on mental health than neuropathic pain. This large study emphasizes the importance of careful screening for DPN and pain early in the course of type 2 diabetes.
-
Preventing and treating opioid dependence and withdrawal is a major clinical challenge, and the underlying mechanisms of opioid dependence and withdrawal remain elusive. We hypothesized that prolonged morphine exposure or chronic inflammation-induced μ-opioid receptor activity serves as a severe stress that elicits neuronal alterations and recapitulates events during development. Here, we report that Wnt signaling, which is important in developmental processes of the nervous system, plays a critical role in withdrawal symptoms from opioid receptor activation in mice. ⋯ In the DH, Wnt5b, acts through the atypical Wnt-Ryk receptor and alternative Wnt-YAP/TAZ signaling pathways, contributing to the naloxone-precipitated opioid withdrawal-like behavioral symptoms and hyperalgesia. Inhibition of Wnt synthesis and blockage of Wnt signaling pathways greatly suppress the behavioral and neurochemical alterations after naloxone-precipitated withdrawal. These findings reveal a critical mechanism underlying naloxone-precipitated opioid withdrawal, suggesting that targeting Wnt5b synthesis in DRG neurons and Wnt signaling in DH may be an effective approach for prevention and treatment of opioid withdrawal syndromes, as well as the transition from acute to chronic pain.
-
Complex regional pain syndrome (CRPS) develops after-limb injury, with persistent pain and deficits in movement frequently co-occurring. The striatum is critical for mediating multiple mechanisms that are often aberrant in CRPS, which includes sensory and pain processing, motor function, and goal-directed behaviors associated with movement. Yet, much remains unknown with regards to the morphological and functional properties of the striatum and its subregions in this disease. ⋯ These clinical pain- and movement-related findings in CRPS patients were concomitant with bilateral decreases in gray matter density in the putamen as well as functional connectivity increases and decreases among the putamen and pre-/postcentral gyri and cerebellum, respectively. Importantly, higher levels of clinical pain and motor impairment were associated with increased putamen-pre-/postcentral gyri functional connectivity strengths. Collectively, these findings suggest that putaminal alterations, specifically the functional interactions with sensorimotor structures, may underpin clinical pain and motor impairment in chronic CRPS patients.
-
The amygdala is a key subcortical region believed to contribute to emotional components of pain. As opioid receptors are found in both the central (CeA) and basolateral (BLA) nuclei of the amygdala, we investigated the effects of morphine microinjection on evoked pain responses, pain-motivated behaviors, dopamine release in the nucleus accumbens (NAc), and descending modulation in rats with left-side spinal nerve ligation (SNL). Morphine administered into the right or left CeA had no effect on nerve injury-induced tactile allodynia or mechanical hyperalgesia. ⋯ Microinjection of morphine into the BLA had no effects on evoked behaviors and did not produce CPP in nerve-injured rats. These findings demonstrate that the amygdalar action of morphine is specific to the right CeA contralateral to the side of injury and results in enhancement of net descending inhibition. In addition, engagement of mu opioid receptors in the right CeA modulates affective qualities of ongoing pain through endogenous opioid neurotransmission within the rACC, revealing opioid-dependent functional connections from the CeA to the rACC.