Pain
-
High-threshold mechanosensitive and mechanoinsensitive ("silent") nociceptors have similar electrical thresholds for transcutaneous sine wave stimulation at 4 Hz that selectively activates cutaneous C nociceptors in human skin. Their fundamentally different functions particularly in chronic pain warrant differential stimulation protocols. We used transcutaneously delivered slow depolarizing stimuli (half-sine, 500 ms duration, 0.01-1 mA) in humans to assess intensity-response relations for the induction of pain psychophysically and recorded activation of mechanosensitive and silent nociceptors in healthy volunteers by microneurography. ⋯ In pig skin, the amplitude-dependent activation of mechanosensitive nociceptors was confirmed (0.2-1 mA, n = 28), and activation thresholds for most silent nociceptors (n = 13) were found above 10 mA. Non-nociceptive low-threshold mechanosensitive C fibers (n = 14) displayed lower activation thresholds for half-sine wave stimuli with an amplitude-dependent discharge increase between 0.01 and 0.1 mA. We conclude that transcutaneous electrical stimulation with 500-ms half-sine wave pulses between 0.2 and 1 mA causes amplitude-dependent pain by preferential activation of mechanosensitive C nociceptors.
-
Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. ⋯ For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.
-
Withdrawal from systemic opioids can induce long-term potentiation (LTP) at spinal C-fibre synapses ("opioid-withdrawal-LTP"). This is considered to be a cellular mechanism underlying opioid withdrawal-induced hyperalgesia, which is a major symptom of the opioid withdrawal syndrome. Opioids can activate glial cells leading to the release of proinflammatory mediators. ⋯ In striking contrast, in female rats, the induction of morphine-withdrawal-LTP was independent of spinal glial cells. Instead, blocking µ-opioid receptors in the spinal cord was sufficient to prevent a facilitation of synaptic strength. Our study revealed fundamental sex differences in the mechanisms underlying morphine-withdrawal-LTP at C-fibre synapses: supraspinal and gliogenic mechanisms in males and a spinal, glial cell-independent mechanism in females.
-
Rheumatoid arthritis-associated pain is poorly managed, often persisting when joint inflammation is pharmacologically controlled. Comparably, in the mouse K/BxN serum-transfer model of inflammatory arthritis, hind paw nociceptive hypersensitivity occurs with ankle joint swelling (5 days after immunisation) persisting after swelling has resolved (25 days after immunisation). In this study, lipid mediator (LM) profiling of lumbar dorsal root ganglia (DRG), the site of sensory neuron cell bodies innervating the ankle joints, 5 days and 25 days after serum transfer demonstrated a shift in specialised proresolving LM profiles. ⋯ Unlike gabapentin, which was used as positive control, systemic MaR1 did not display acute antihyperalgesic action. Therefore, these data suggest that MaR1 effects observed after K/BxN serum transfer relate to modulation of macrophage recruitment, more likely than to direct actions on sensory neurons. Our study highlights that, in DRG, aberrant proresolution mechanisms play a key role in arthritis joint pain dissociated from joint swelling, opening novel approaches for rheumatoid arthritis pain treatment.