Pain
-
Recent studies have drawn the attention to the link between alcohol use disorder and the presence of pain. Indeed, the correct management of pain in patients with a previous history of alcohol use disorder has been reported to decrease the risk of relapse in alcohol drinking, suggesting that in this prone population, pain may increase the vulnerability to relapse. Previous data in male rats revealed that inflammatory pain desensitizes mu-opioid receptors in the ventral tegmental area and increases intake of high doses of heroin. ⋯ Finally, we evaluated the effect of inflammatory pain on the alcohol deprivation effect in long-term ethanol-experienced male rats. After 4 cycles of free ethanol intake and abstinence periods, inflammatory pain induced alcohol deprivation effect without affecting its magnitude. These intriguing data reveal the impact of pain on neurochemical and behavioral effects after alcohol administration but also underscore the necessity of finding an appropriate paradigm to determine the long-term behavioral consequences.
-
Mixed lineage leukemia 1 (MLL1)-mediated histone H3 lysine 4 trimethylation (H3K4me3) of a subset of genes has been linked to the transcriptional activation critical for synaptic plasticity, but its potential contribution to neuropathic allodynia development remains poorly explored. Here, we show that MLL1, which is induced in dorsal horn neuron after spinal nerve ligation (SNL), is responsible for mechanical allodynia and increased H3K4me3 at metabotropic glutamate receptor subtype 5 (mGluR5) promoter. Moreover, SNL induced WD (Trp-Asp) repeat domain 5 subunit (WDR5) expression as well as the MLL1-WDR5 interaction accompany with H3K4me3 enrichment and transcription of mGluR5 gene in the dorsal horn in neuropathic allodynia progression. ⋯ Furthermore, disrupting the expression of MLL1 or WDR5 using small interfering RNA attenuated mechanical allodynia and reversed protein transcription/expression and complex localizing at mGluR5 promoter in the dorsal horn induced by SNL. This finding revealed that MLL1-WDR5 complex integrity regulates MLL1 and WDR5 recruitment to H3K4me3 enrichment at mGluR5 promoter in the dorsal horn underlying neuropathic allodynia. Collectively, our findings indicated that SNL enhances the MLL1-WDR5 complex, which facilitates MLL1 and WDR5 recruitment to H3K4me3 enrichment at mGluR5 promoter in spinal plasticity contributing to neuropathic allodynia pathogenesis.
-
Correct communication between immune cells and peripheral neurons is crucial for the protection of our bodies. Its breakdown is observed in many common, often painful conditions, including arthritis, neuropathies, and inflammatory bowel or bladder disease. Here, we have characterised the immune response in a mouse model of neuropathic pain using flow cytometry and cell-type-specific RNA sequencing (RNA-seq). ⋯ This raises the question of whether the commonly used categorisation of pain into "inflammatory" and "neuropathic" is one that is mechanistically appropriate. Finally, we collated our data with other published RNA-seq data sets on neurons, macrophages, and Schwann cells in naive and nerve injury states. The result is a practical web-based tool for the transcriptional data mining of peripheral neuroimmune interactions. http://rna-seq-browser.herokuapp.com/.
-
Pain is a principal contributor to the global burden of arthritis with peripheral sensitization being a major cause of arthritis-related pain. Within the knee joint, distal endings of dorsal root ganglion neurons (knee neurons) interact with fibroblast-like synoviocytes (FLS) and the inflammatory mediators they secrete, which are thought to promote peripheral sensitization. ⋯ Electrophysiological recordings from retrograde labelled knee neurons cocultured with TNF-FLS, or supernatant derived from TNF-FLS, revealed a depolarized resting membrane potential, increased spontaneous action potential firing, and enhanced TRPV1 function, all consistent with a role for FLS in mediating the sensitization of pain-sensing nerves in arthritis. Therefore, data from this study demonstrate the ability of FLS activated by TNF-α to promote neuronal sensitization, results that highlight the importance of both nonneuronal and neuronal cells to the development of pain in arthritis.