Pain
-
Mechanisms of visceral pain sensitization and referred somatic hypersensitivity remain unclear. We conducted calcium imaging in Pirt-GCaMP6s mice to gauge responses of dorsal root ganglion (DRG) neurons to visceral and somatic stimulation in vivo. Intracolonic instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS) induced colonic inflammation and increased the percentage of L6 DRG neurons that responded to colorectal distension above that of controls at day 7. ⋯ Visceral irritation from intracolonic capsaicin instillation also increased Evans blue extravasation in hind paws and low-back skin and acutely increased the percentage of L4 DRG neurons responding to hind paw pinch and the response of L6 DRG neurons to low-back brush stimulation. These findings suggest that TNBS-induced colitis and capsaicin-induced visceral irritation may sensitize L6 DRG neurons to colorectal and somatic inputs and also increase the excitability of L4 DRG neurons that do not receive colorectal inputs. These changes may represent a potential peripheral neuronal mechanism for visceral pain sensitization and referred somatic hypersensitivity.
-
Chronic complications of traumatic brain injury represent one of the greatest financial burdens and sources of suffering in the society today. A substantial number of these patients suffer from posttraumatic headache (PTH), which is typically associated with tactile allodynia. Unfortunately, this phenomenon has been understudied, in large part because of the lack of well-characterized laboratory animal models. ⋯ Both models show a more severe phenotype with repetitive daily injury for 3 days, compared with either 1 or 3 successive injuries in a single day, providing new insight into patterns of injury that may place patients at a greater risk of developing PTH. After recovery from transient cephalic tactile hypersensitivity, mice subjected to closed head injury demonstrate persistent hypersensitivity to established migraine triggers, including calcitonin gene-related peptide and sodium nitroprusside, a nitric oxide donor. Our results offer the field new tools for studying PTH and preclinical support for a pathophysiologic role of calcitonin gene-related peptide in this condition.