Pain
-
Fibromyalgia (FM) is characterized by widespread chronic pain, fatigue, and somatic symptoms. The influence of phenotypic changes in monocytes on symptoms associated with FM is not fully understood. The primary aim of this study was to take a comprehensive whole-body to molecular approach in characterizing relationships between monocyte phenotype and FM symptoms in relevant clinical populations. ⋯ Taken together, our data suggest that monocyte phenotype and their cytokine profiles are associated with pain-related symptoms in individuals with FM. Furthermore, our data show that IL-5 has a potential role in analgesia in an animal model of FM. Thus, targeting anti-inflammatory cytokines such as IL-5 secreted by circulating leukocytes could serve as a promising intervention to control pain and other somatic symptoms associated with FM.
-
Pain catastrophizing is prominent in chronic pain conditions such as fibromyalgia and has been proposed to contribute to the development of pain widespreadness. However, the brain mechanisms responsible for this association are unknown. We hypothesized that increased resting salience network (SLN) connectivity to nodes of the default mode network (DMN), representing previously reported pain-linked cross-network enmeshment, would be associated with increased pain catastrophizing and widespreadness across body sites. ⋯ A whole-brain regression analysis focused on SLN connectivity indicated that pain widespreadness was also positively associated with SLN connectivity to the posterior cingulate cortex, a key node of the DMN. Moreover, we found that SLN-posterior cingulate cortex connectivity statistically mediated the association between pain catastrophizing and pain widespreadness (P = 0.01). In conclusion, we identified a putative brain mechanism underpinning the association between greater pain catastrophizing and a larger spatial extent of body pain in fibromyalgia, implicating a role for brain SLN-DMN cross-network enmeshment in mediating this association.
-
Persistent idiopathic facial pain (PIFP) is a poorly understood chronic pain syndrome of the face, formerly known as atypical facial pain. It is characterized by a constant painful sensation without neurological abnormalities and without clinically objectifiable cause. Similarities to neuropathic pain conditions have been discussed and are currently thought to be relevant for the pathophysiology of this disease. ⋯ Patients with PIFP show exclusively a stronger activation to painful stimulation in the spinal trigeminal nucleus when contrasted against healthy controls. Our data suggest that abnormal central pain processing plays a role in the pathophysiology of PIFP. An integration of these findings into neuropathic pain models might help to gain a better general understanding of the pathophysiology of PIFP.
-
Randomized Controlled Trial
Open-label placebo for chronic low back pain: a 5-year follow-up.
Long-term follow-up of patients treated with open-label placebo (OLP) are nonexistent. In this article, we report a 5-year follow-up of a 3-week OLP randomized controlled trial (RCT) in patients with chronic low back pain. We recontacted the participants of original RCT and reassessed their pain, disability, and use of pain medication. ⋯ By contrast, the use of alternative approaches to pain management increased (from 18% to 29%). Although the reduction in pain and medication is comparable with the improvements that occurred in the original study, a major limitation of this long-term follow-up is the absence of controls for spontaneous improvement and new cointerventions. Nonetheless, our data suggest that reductions in pain and disability after OLP may be long lasting.
-
Severe neuropathic pain is a hallmark of Fabry disease, a genetic disorder caused by a deficiency in lysosomal α-galactosidase A. Pain experienced by these patients significantly impacts their quality of life and ability to perform everyday tasks. Patients with Fabry disease suffer from peripheral neuropathy, sensory abnormalities, acute pain crises, and lifelong ongoing pain. ⋯ This review will detail the types of pain, sensory abnormalities, influence of demographics on pain, and current strategies to treat pain experienced by patients with Fabry disease. In addition, we discuss the current knowledge of Fabry pain pathogenesis and which aspects of the disease preclinical models accurately recapitulate. Understanding the commonalities and divergences between humans and preclinical models can be used to further interrogate mechanisms causing the pain and sensory abnormalities as well as advance development of the next generation of therapeutics to treat pain in patients with Fabry disease.