Pain
-
Parvalbumin-expressing interneurons (PVINs) in the spinal dorsal horn are found primarily in laminae II inner and III. Inhibitory PVINs play an important role in segregating innocuous tactile input from pain-processing circuits through presynaptic inhibition of myelinated low-threshold mechanoreceptors and postsynaptic inhibition of distinct spinal circuits. ⋯ Here, we use neuroanatomical and optogenetic approaches to show that ePVINs comprise a larger proportion of the PVIN population than previously reported and that both ePVIN and inhibitory PVIN populations form synaptic connections among (and between) themselves. We find that these cells contribute to neuronal networks that influence activity within several functionally distinct circuits and that aberrant activity of ePVINs under pathological conditions is well placed to contribute to the development of mechanical hypersensitivity.
-
Randomized Controlled Trial
Enhanced mindfulness-based stress reduction in episodic migraine-effects on sleep quality, anxiety, stress, and depression: a secondary analysis of a randomized clinical trial.
Patients with migraine suffer from high morbidity related to the repeated headache attacks, characteristic of the disorder, poor sleep, and a high prevalence of comorbid psychosocial disorders. Current pharmacological therapies do not address these aspects of migraine, but nonpharmacological treatments such as mindfulness-based stress reduction (MBSR) have been shown to improve both pain and psychological well-being. In this secondary analysis, we examined the change over time in sleep quality and psychosocial outcomes from the magnetic resonance imaging outcomes for mindfulness meditation clinical trial and assessed how these mediated treatment response (50% reduction in headache frequency postintervention). ⋯ There was also no significant association between baseline scores and treatment response. Mediation analysis showed a significant indirect effect of 6% for sleep: In other words, small improvements in sleep may have contributed to the efficacy of MBSR+. Trial registration: NCT02133209.
-
Painful diabetic neuropathy (PDN) is an intractable complication affecting 25% of diabetic patients. Painful diabetic neuropathy is characterized by neuropathic pain accompanied by dorsal root ganglion (DRG) nociceptor hyperexcitability, resulting in calcium overload, axonal degeneration, and loss of cutaneous innervation. The molecular pathways underlying these effects are unknown. ⋯ In particular, nociceptor hyperexcitability and the associated increased intracellular calcium concentrations could lead to excessive calcium entry into mitochondria mediated by the mitochondrial calcium uniporter, resulting in increased calcium-dependent mitochondrial fission and ultimately contributing to small-fiber degeneration and neuropathic pain in PDN. Hence, we propose that targeting calcium entry into nociceptor mitochondria may represent a promising effective and disease-modifying therapeutic approach for this currently intractable and widespread affliction. Moreover, these results are likely to inform studies of other neurodegenerative disease involving similar underlying events.
-
The current study used functional magnetic resonance imaging to directly compare disease-relevant cerebral pain processing in well-characterized patient cohorts of fibromyalgia (FM, nociplastic pain) and rheumatoid arthritis (RA, nociceptive pain). Secondary aims were to identify pain-related cerebral alterations related to the severity of clinical symptoms such as pain intensity, depression, and anxiety. Twenty-six patients with FM (without RA-comorbidity) and 31 patients with RA (without FM-comorbidity) underwent functional magnetic resonance imaging while stimulated with subjectively calibrated painful pressures corresponding to a pain sensation of 50 mm on a 100-mm visual analogue scale. ⋯ Specifically, in response to painful stimulation, patients with FM compared to patients with RA exhibited increased brain activation in bilateral inferior parietal lobe (IPL), left inferior frontal gyrus (IFG)/ventrolateral prefrontal cortex (vlPFC) encapsulating left dorsolateral prefrontal cortex, and right IFG/vlPFC. However, patients with RA compared to patients with FM exhibited increased functional connectivity (during painful stimulation) between right and left IPL and sensorimotor network and between left IPL and frontoparietal network. Within the FM group only, anxiety scores positively correlated with pain-related brain activation in left dorsolateral prefrontal cortex and right IFG/vlPFC, which further highlights the complex interaction between affective (ie, anxiety scores) and sensory (ie, cerebral pain processing) dimensions in this patient group.
-
The role that inflammation plays in human nerve injury and neuropathic pain is incompletely understood. Previous studies highlight the role of inflammation in the generation and maintenance of neuropathic pain, but the emerging evidence from the preclinical literature for its role in the resolution of neuropathic pain remains to be explored in humans. Here, we use carpal tunnel syndrome (CTS) as a human model system of nerve injury and neuropathic pain to determine changes in serum cytokine protein levels and gene expression levels before (active stage of disease) and after carpal tunnel decompression surgery (recovery). ⋯ By contrast, protein levels of IL-4 positively correlated with pain scores. In conclusion, we demonstrate specific dysregulation of systemic cytokine expression in both the active and resolution phases of nerve injury and neuropathic pain. IL-9 represents an interesting candidate associated with resolution of nerve injury and neuropathic pain.