Pain
-
Chronic pain is a pervasive, disabling, and understudied feature of multiple sclerosis (MS), a progressive demyelinating and neurodegenerative disease. Current focus on motor components of MS disability combined with difficulties assessing pain symptoms present a challenge for the evaluation and management of pain in MS, highlighting the need for novel methods of assessment of neural signatures of chronic pain in MS. We investigate chronic pain in MS using MS-related trigeminal neuralgia (MS-TN) as a model condition focusing on gray matter structures as predictors of chronic pain. ⋯ The ML classifier compared imaging metrics of patients with MS and MS-TN and distinguished between these conditions with 93.4% individual average testing accuracy. Structures within default-mode, somatomotor, salience, and visual networks (including hippocampus, primary somatosensory cortex, occipital cortex, and thalamic subnuclei) were identified as significant imaging predictors of trigeminal neuralgia pain. Our results emphasize the multifaceted nature of chronic pain and demonstrate the utility of imaging and ML in assessing and understanding MS-TN with greater objectivity.
-
Transient receptor potential ankyrin 1 (TRPA1) is implicated in physiological and pathological nociceptive signaling, but the clinical benefit of TRPA1 antagonists in chronic pain is not clearly demonstrated. LY3526318 is an oral, potent, and selective novel TRPA1 antagonist. The Chronic Pain Master Protocol was used to evaluate the safety and efficacy of LY3526318 in 3 randomized, placebo-controlled, proof-of-concept studies in knee osteoarthritis pain (OA), chronic low back pain (CLBP), and diabetic peripheral neuropathic pain (DPNP). ⋯ LY3526318 showed a potential drug-induced hepatotoxic effect posing a risk for clinical development. No other safety signals were identified. LY3526318 showed potential for different responses among chronic pain indications and patient subpopulations, highlighting challenges in developing TRPA1 antagonists but supporting their value as a target in managing chronic pain.
-
High frequency repetitive transcranial magnetic stimulation (rTMS) to the posterior-superior insula (PSI) may produce analgesic effects. However, the alterations in cortical activity during PSI-rTMS analgesia remain poorly understood. The present study aimed to determine whether tonic capsaicin-induced pain and cortical inhibition (indexed using TMS-electroencephalography) are modulated by PSI-rTMS. ⋯ We also found that the reduction in pain numerical rating scale scores after active vs sham rTMS was correlated with and partially mediated by decreases in the N45 peak. These findings provide evidence of the analgesic effects of PSI-rTMS and suggest that the TEP N45 peak is a potential marker and mediator of both pain and analgesia. This study demonstrates that high-frequency rTMS targeting the posterior-superior insula reduces capsaicin-induced pain and alters cortical activity, with changes in the N45 TMS-evoked potential peak mediating the analgesic effects.