Pain
-
Temporomandibular disorder (TMD) and irritable bowel syndrome (IBS) are 2 chronic overlapping pain conditions (COPCs) that present with significant comorbidity. Both conditions are more prevalent in women and are exacerbated by stress. ⋯ In particular, data indicate that increased activity in the insula and regions of the reward and limbic systems are associated with more pronounced and longer-lasting visceral pain behaviors in female rats, while the faster pain resolution in male rats may be due to increased activity in descending pain inhibitory pathways. These findings suggest the critical role of brain mechanisms in chronic pain conditions and that sex may be a risk factor of developing COPCs.
-
Pain sensitivity of healthy subjects in the cold-pressor (CP) test was proposed to be dichotomously distributed and to represent a pain sensitivity trait. Still, it has not been systematically explored which factors influence this pain sensitivity readout. The aim of this study was to distinguish potential contributions of local tissue-related factors such as perfusion and thermoregulation or gain settings in nociceptive systems. ⋯ Baroreceptor activation suppressed pain and cardiovascular responses more efficiently in CP-insensitive subjects. Cold-pressor sensitivity generalized to a pain trait of C-fiber-mediated nociceptive channels, which was independent of local thermal and vascular changes in the ice-water-exposed hand. Thus, the C-fiber pain trait reflects gain setting of the nociceptive system.
-
Severe pain is often experienced by patients with head and neck cancer and is associated with a poor prognosis. Despite its frequency and severity, current treatments fail to adequately control cancer-associated pain because of our lack of mechanistic understanding. Although recent works have shed some light of the biology underlying pain in HPV-negative oral cancers, the mechanisms mediating pain in HPV+ cancers remain unknown. ⋯ Interrogation of published sequencing data of human sensory neurons exposed to human cancer-sEVs suggested a stimulation of protein translation in neurons. Induction of translation by cancer-sEVs was validated in our mouse model, and its inhibition alleviated cancer pain in mice. In summary, our work reveals that HPV+ head and neck squamous cell carcinoma-derived sEVs alter TRPV1+ neurons by promoting nascent translation to mediate cancer pain and identified several promising therapeutic targets to interfere with this pathway.
-
Dysregulation of voltage-gated sodium Na V 1.7 channels in sensory neurons contributes to chronic pain conditions, including trigeminal neuropathic pain. We previously reported that chronic pain results in part from increased SUMOylation of collapsin response mediator protein 2 (CRMP2), leading to an increased CRMP2/Na V 1.7 interaction and increased functional activity of Na V 1.7. Targeting this feed-forward regulation, we developed compound 194 , which inhibits CRMP2 SUMOylation mediated by the SUMO-conjugating enzyme Ubc9. ⋯ Compound 194 also led to a reduction in TG neuron excitability. Finally, when intranasally administered to rats with chronic constriction injury of the infraorbital nerve, 194 significantly decreased nociceptive behaviors. Collectively, our findings underscore the critical role of CRMP2 in regulating Na V 1.7 within TG neurons, emphasizing the importance of this indirect modulation in trigeminal neuropathic pain.