Pain
-
Randomized Controlled Trial
METHA-NeP: effectiveness and safety of methadone for neuropathic pain: a controlled randomized trial.
In this randomized, double-blind, parallel placebo-controlled clinical trial, we evaluated the efficacy of methadone as an add-on therapy for people with chronic neuropathic pain (NP). Eighty-six patients were randomly assigned to receive methadone or placebo for 8 weeks. The primary outcome was the proportion of participants achieving at least 30% pain relief from baseline using a 100-mm pain Visual Analogue Scale. ⋯ No serious adverse events or deaths occurred. Discontinuation due to adverse events was reported in 2 participants in the methadone and none in the placebo arm. Methadone use as an add-on to an optimized treatment for NP with first- and/or second-line drugs provided superior analgesia, improved sleep, and enhanced global impression of change, without being associated with significant serious adverse effects that would raise safety concerns.
-
Multicenter Study
Development and internal validation of a clinical risk tool to predict chronic postsurgical pain in adults: a prospective multicentre cohort study.
Chronic postsurgical pain (CPSP) is a highly prevalent condition. To improve CPSP management, we aimed to develop and internally validate generalizable point-of-care risk tools for preoperative and postoperative prediction of CPSP 3 months after surgery. A multicentre, prospective, cohort study in adult patients undergoing elective surgery was conducted between May 2021 and May 2023. ⋯ These models demonstrated good calibration and clinical utility. The primary CPSP model demonstrated fair predictive performance including 2 significant predictors. Derivation of a generalizable risk tool with point-of-care predictors was possible for the threshold-based CPSP models but requires independent validation.
-
One-fifth of US adults experience chronic pain, which is associated with increased tobacco and cannabis use. Although bidirectional relationships between tobacco and pain have been demonstrated, pathways between pain, cannabis use, and co-use of cannabis and tobacco are understudied. We aimed to estimate the effects of (1) substance use (exclusive and co-use of cannabis and tobacco) on later pain intensity, and (2) pain intensity on later substance use. ⋯ Compared with no cannabis/tobacco use at T1, co-use (OR: 2.29 [95% CI: 2.09-2.51]), exclusive tobacco use (2.00 [1.86-2.14]), and exclusive cannabis use (1.35 [1.13-1.61]) were all associated with moderate/severe pain at T2. Moderate/severe pain at T1 increased odds of co-use (2.43 [2.22-2.66]), exclusive tobacco (2.12 [1.98-2.28]), and exclusive cannabis use (1.46 [1.29-1.65]) compared with no cannabis/tobacco use at T2, and increased odds of co-use at T2 compared with exclusive cannabis/tobacco use. Findings demonstrated bidirectional relationships between pain and the exclusive use and co-use of cannabis and tobacco and indicate potential synergy in the co-use of cannabis and tobacco with respect to pain.
-
Voltage-gated sodium (Na v ) channels present untapped therapeutic value for better and safer pain medications. The Na v 1.8 channel isoform is of particular interest because of its location on peripheral pain fibers and demonstrated role in rodent preclinical pain and neurophysiological assays. To-date, no inhibitors of this channel have been approved as drugs for treating painful conditions in human, possibly because of challenges in developing a sufficiently selective drug-like molecule with necessary potency not only in human but also across preclinical species critical to the preclinical development path of drug discovery. ⋯ In this report, we have leveraged numerous physiological end points in nonhuman primates to evaluate the analgesic and pharmacodynamic activity of a novel, potent, and selective Na v 1.8 inhibitor compound, MSD199. These pharmacodynamic biomarkers provide important confirmation of the in vivo impact of Na v 1.8 inhibition on peripheral pain fibers in primates and have high translational potential to the clinical setting. These findings may thus greatly improve success of translational drug discovery efforts toward better and safer pain medications, as well as the understanding of primate biology of Na v 1.8 inhibition broadly.