Pain
-
Current therapies to treat skeletal fracture pain are extremely limited. Some non-steroidal anti-inflammatory drugs have been shown to inhibit bone healing and opiates induce cognitive dysfunction and respiratory depression which are especially problematic in the elderly suffering from osteoporotic fractures. In the present report, we developed a closed femur fracture pain model in the mouse where skeletal pain behaviors such as flinching and guarding of the fractured limb are reversed by 10mg/kg morphine. ⋯ Anti-NGF therapy did not inhibit bone healing as measured by callus formation, bridging of the fracture site or mechanical strength of the bone. As the anti-NGF antibody does not appreciably cross the blood-brain barrier, the present data suggest that the anti-hyperalgesic action of anti-NGF therapy results from blockade of activation and/or sensitization of the CGRP/trkA positive fibers that normally constitute the majority of sensory fibers that innervate the bone. These results demonstrate that NGF plays a significant role in driving fracture pain and that NGF sequestering therapies may be efficacious in attenuating this pain.
-
The influence of contextual factors on the pain evoked by a noxious stimulus is not well defined. In this study, a -20 degrees C rod was placed on one hand for 500 ms while we manipulated the evaluative context (or 'meaning') of, warning about, and visual attention to, the stimulus. For meaning, a red (hot, more tissue damaging) or blue (cold, less tissue damaging) visual cue was used. ⋯ Pain was rated as more intense, and the stimulus as hotter, when subjects looked at the red-cued stimulus than when they didn't (difference approximately 0.9 for pain intensity and approximately 2 for temperature). We conclude that meaning affects the experience a noxious stimulus evokes, and that warning and visual attention moderate the effects of meaning when the meaning is associated with tissue-damage. Different dimensions of the stimulus' context can have differential effects on sensory-discriminative and affective-emotional components of pain.
-
A painful neuropathy is frequently observed in people living with human immunodeficiency virus type 1 (HIV-1). The HIV coat protein, glycoprotein 120 (gp120), implicated in the pathogenesis of neurological disorders associated with HIV, is capable of initiating neurotoxic cascades via an interaction with the CXCR4 and/or CCR5 chemokine receptors, which may underlie the pathogenesis of HIV-associated peripheral neuropathic pain. In order to elucidate the mechanisms underlying HIV-induced painful peripheral neuropathy, we have characterised pathological events in the peripheral and central nervous system following application of HIV-1 gp120 to the rat sciatic nerve. ⋯ The mechanical hypersensitivity was sensitive to systemic treatment with gabapentin, morphine and the cannabinoid WIN 55,212-2, but not with amitriptyline. Immunohistochemical studies reveal: decreased intraepidermal nerve fibre density, macrophage infiltration into the peripheral nerve at the site of perineural HIV-1 gp120; changes in sensory neuron phenotype including expression of activating transcription factor 3 (ATF3) in 27% of cells, caspase-3 in 25% of cells, neuropeptide Y (NPY) in 12% of cells and galanin in 13% of cells and a spinal gliosis. These novel findings suggest that this model is not only useful for the elucidation of mechanisms underlying HIV-1-related peripheral neuropathy but may prove useful for preclinical assessment of drugs for the treatment of HIV-1 related peripheral neuropathic pain.
-
The contribution of endothelin-1 (ET-1), acting via endothelin-A receptors (ET(A)), on post-incisional pain was examined in a rat model of incision through the hairy skin of the lumbar dorsum. Post-incisional mechanical hyperesthesia was evaluated by cutaneous trunci muscle reflexes (CTMR) of subcutaneous muscles responding to stimulation with von Frey filaments near the wound (primary responses) and at a distance, especially on the contralateral dorsum (secondary responses, involving spinal circuits). The role of ET(A) was determined by pre-incisional, subcutaneous injection of the selective receptor antagonist BQ-123 at the incision site, 15 min or 24h before surgery. ⋯ Systemically delivered BQ-123 was without effect on any post-incisional hyperesthesia, and if the antagonist was locally injected 24h before surgery there was no difference on hyperesthesia compared to vehicle injected at that time. We conclude that ET-1, released from skin by incision, activates nociceptors to cause primary allodynia and to sensitize spinal circuits through central sensitization. Blockade of ET(A) in the immediate peri-operative period prevents the later development of central sensitization.