Pain
-
Cold allodynia, pain in response to cooling, occurs during or within hours of oxaliplatin infusion and is thought to arise from a direct effect of oxaliplatin on peripheral sensory neurons. To characterize the pathophysiological mechanisms underlying acute oxaliplatin-induced cold allodynia, we established a new intraplantar oxaliplatin mouse model that rapidly developed long-lasting cold allodynia mediated entirely through tetrodotoxin-sensitive Nav pathways. ⋯ Intraplantar injection of the Nav1.6 activator Cn2 elicited spontaneous pain, mechanical allodynia, and enhanced 4-aminopyridine-induced cold allodynia. These findings provide behavioural evidence for a crucial role of Nav1.6 in multiple peripheral pain pathways including cold allodynia.
-
The natural hormone uroguanylin regulates intestinal fluid homeostasis and bowel function through activation of guanylate cyclase-C (GC-C), resulting in increased intracellular cyclic guanosine-3',5'-monophosphate (cGMP). We report the effects of uroguanylin-mediated activation of the GC-C/cGMP pathway in vitro on extracellular cGMP transport and in vivo in rat models of inflammation- and stress-induced visceral hypersensitivity. In vitro exposure of intestinal Caco-2 cells to uroguanylin stimulated bidirectional, active extracellular transport of cGMP into luminal and basolateral spaces. cGMP transport was significantly and concentration dependently decreased by probenecid, an inhibitor of cGMP efflux pumps. ⋯ The antihyperalgesic effects of cGMP were not associated with increased colonic spasmolytic activity, but were linked to significantly decreased firing rates of TNBS-sensitized colonic afferents in rats in response to mechanical stimuli. In conclusion, these data suggest that the continuous activation of the GC-C/cGMP pathway along the intestinal tract by the endogenous hormones guanylin and uroguanylin results in significant reduction of gastrointestinal pain. Extracellular cGMP produced on activation of GC-C is the primary mediator in this process via modulation of sensory afferent activity.
-
Oxytocin (OT) and arginine vasopressin (AVP) are 2 neuropeptides that display well-known effects on the reproductive system. Although still controversial, oxytocin and vasopressin were demonstrated to exert potent effects on the nociceptive system when administered directly in various central nervous structures. On the other hand, little is known about their peripheral (hormonal) actions on nociception and pain responses. ⋯ Stress-induced analgesia was transiently lost after i.v. administration of OTR antagonist. Together, the present work provides straightforward evidence that blood levels of OT and AVP modulate nociception, windup plasticity and pain responses. The final target structures explaining these effects remains to be identified but are likely to be C-type nociceptors.
-
The frequency of not being able to self-report pain after a stroke has not been previously assessed in a population-based sample. We studied the epidemiology of this problem using a cohort of patients hospitalized after a stroke in Olmsted County, Minnesota, from June 1, 2008, to June 1, 2012. Overall, 52 of 388 (13.4%) individuals were unable to provide a meaningful response to either a Faces Pain Scale or Numerical Rating Scale on admission. ⋯ Inability to self-report pain on admission was further associated with either subsequent death during the hospitalization (P<.0001) or an inability to provide self-report on dismissal (P<.0001). Our study further defines the epidemiology of the inability to self-report pain after a stroke as being less common than previously thought. Attempts to validate observational pain scales for poststroke patients should focus on those individuals with aphasia and/or depressed levels of consciousness.
-
Pain is a frequently observed non-motor symptom of patients with Parkinson's disease. In some patients, Parkinson's-related pain responds to dopaminergic treatment. In the present study, we aimed to elucidate whether subthalamic deep brain stimulation has a similar beneficial effect on pain in Parkinson's disease, and whether this effect can be predicted by a pre-operative l-dopa challenge test assessing pain severity. ⋯ In the remaining 6 patients, pain was not improved by dopaminergic treatment nor by deep brain stimulation. Thus, we conclude that pain relief following subthalamic deep brain stimulation is superior to that following dopaminergic treatment, and that the response of pain symptoms to deep brain stimulation can be predicted by l-dopa challenge tests assessing pain severity. This diagnostic procedure could contribute to the decision on whether or not a Parkinson's patient with severe pain should undergo deep brain stimulation for potential pain relief.