Pain
-
Recently, we showed that patients with knee osteoarthritis (KOA) demonstrate alterations in the thalamic concentrations of several metabolites compared with healthy controls: higher myo-inositol (mIns), lower N-acetylaspartate (NAA), and lower choline (Cho). Here, we evaluated whether these metabolite alterations are specific to KOA or could also be observed in patients with a different musculoskeletal condition, such as chronic low back pain (cLBP). Thirty-six patients with cLBP and 20 healthy controls were scanned using 1 H-magnetic resonance spectroscopy (MRS) and a PRESS (Point RESolved Spectroscopy) sequence with voxel placement in the left thalamus. ⋯ Additionally, also in patients, both Cho and mIns levels were positively correlated with age ( P < 0.01 and P < 0.05, respectively). Altogether, these results suggest that thalamic metabolite changes may be common across etiologically different musculoskeletal chronic pain conditions, including cLBP and KOA, and may relate to symptoms often comorbid with chronic pain, such as sleep disturbance. The functional and clinical significance of these brain changes remains to be fully understood.
-
Paradoxical heat sensation (PHS) is the perception of warmth when the skin is cooled. Paradoxical heat sensation rarely occurs in healthy individuals but more frequently in patients suffering from lesions or disease of the peripheral or central nervous system. To further understand mechanisms and epidemiology of PHS, we evaluated the occurrence of PHS in relation to disease aetiology, pain levels, quantitative sensory testing parameters, and Neuropathic Pain Symptom Inventory (NPSI) items in patients with nervous system lesions. ⋯ Neuropathic Pain Symptom Inventory scores were lower for burning and electric shock-like pain quality for patients with PHS. Our findings suggest that PHS is associated with loss of small thermosensory fibre function normally involved in cold and warm perception. Clinically, presence of PHS could help screening for loss of small fibre function as it is straightforward to measure or self-reported by patients.
-
Bradykinin is a peptide implicated in inflammatory pain in both humans and rodents. In rodent sensory neurons, activation of B1 and B2 bradykinin receptors induces neuronal hyperexcitability. Recent evidence suggests that human and rodent dorsal root ganglia (DRG), which contain the cell bodies of sensory neurons, differ in the expression and function of key GPCRs and ion channels; whether bradykinin receptor expression and function are conserved across species has not been studied in depth. ⋯ Using patch-clamp electrophysiology, we found that acute bradykinin increases the excitability of human sensory neurons, whereas prolonged exposure to bradykinin decreases neuronal excitability in a subpopulation of human DRG neurons. Finally, our analyses suggest that donor's history of chronic pain and age may be predictors of higher B1 receptor expression in human DRG neurons. Together, these results indicate that acute bradykinin-induced hyperexcitability, first identified in rodents, is conserved in humans and provide further evidence supporting bradykinin signaling as a potential therapeutic target for treating pain in humans.
-
Neuropathic pain is associated with substantial healthcare costs. However, cost-of-illness studies of small fiber neuropathy (SFN) are scarce. Our aim was to estimate the healthcare, patient and family, and productivity costs of patients with SFN in the Netherlands from a healthcare and societal perspective. ⋯ At the patient level, the average annual SFN healthcare and societal cost of SFN was €3614 (95% confidence interval [CI] €3171-€4072) and €17,871 (95% CI €14,395-€21,480). At the SFN population level, the average healthcare costs were €29.8 (CI €26.4-€34.2) million, and on a societal level, these were €147.7 (CI 120.5-176.3) million. Severe pain was associated with significant lower Qol and higher depression scores, higher healthcare, patient and family, and productivity costs ( P < 0.001).
-
Nerve injury-induced aberrant changes in gene expression in spinal dorsal horn neurons are critical for the genesis of neuropathic pain. N6-methyladenine (m 6 A) modification of DNA represents an additional layer of gene regulation. Here, we report that peripheral nerve injury significantly decreased the level of m 6 A-specific DNA methyltransferase 1 ( N6amt1 ) in dorsal horn neurons. ⋯ Rescuing the decrease in N6amt1 reversed the loss of m 6 A at the promoter for inwardly rectifying potassium channel subfamily J member 16 ( Kcnj16 ), mitigating the nerve injury-induced upregulation of Kcnj16 expression in the dorsal horn and alleviating neuropathic pain hypersensitivities. Conversely, mimicking the downregulation of N6amt1 in naive mice erased DNA m 6 A at the Kcnj16 promoter, elevated Kcnj16 expression, and led to neuropathic pain-like behaviors. Therefore, decreased N6amt1 caused by NR2F6 is required for neuropathic pain, likely through its regulation of m 6 A-controlled KCNJ16 in dorsal horn neurons, suggesting that DNA m 6 A modification may be a potential new target for analgesic and treatment strategies.