Contributions to nephrology
-
Sepsis involves a complex interaction between bacterial toxins and the host immune system. Endotoxin, a component of the outer membrane of Gram-negative bacteria, is involved in the pathogenesis of sepsis producing proinflammatory cytokines and activating the complement system, and is thus an ideal potential therapeutic target. Direct hemoperfusion using polymyxin B-immobilized fiber column (PMX-F) has been shown to bind and neutralize endotoxin in both in vitro and in vivo studies. ⋯ In this study, PMX-F, when added to conventional therapy, significantly improved hemodynamics and organ dysfunction, and reduced 28-day mortality in this targeted population. There is clear biological rationale for endotoxin removal in the clinical management of severe sepsis and septic shock. The current literature seems to provide some support for this premise, and provides the basis for further rigorous study.
-
Sepsis is one of the main causes of death in critically ill patients. The pathophysiology of sepsis is complex and not completely understood. The proinflammatory and anti-inflammatory response leads to cell and organ dysfunction and, in many cases, death. ⋯ Preliminary data indicate the feasibility of these modified techniques in sepsis. Their impact on patient prognosis, however, still needs proof by large randomized clinical trials. Finally, the emerging paradigm of sepsis-induced immune suppression provides additional rationale for the development of extracorporeal blood purification therapy for sepsis.
-
The care of acute kidney injury (AKI) in critically ill children shares several features with adult AKI with some critical distinctions: in both settings, however, the exact identification of renal dysfunction, in-depth knowledge of disparate risk factors and patient-specific management are the primary targets in order to provide optimal care. This article will specifically review recent work published on pediatric AKI about definition and epidemiology, the possible etiologies in specific conditions, and the newest laboratory investigations necessary to diagnose AKI severity. A short description of pediatric renal replacement therapies and their potential application to extracorporeal membrane oxygenation will also be described.
-
We evaluated the ability of the endotoxin activity (EA) assay to determine the need for early intervention for endotoxemia using polymyxin B-based hemoperfusion (PMX-DHP) on septic patients. ⋯ The EA assay can identify patients eligible for PMX-DHP treatment and aids its therapeutic dosing.
-
Acute lung injury (ALI) and acute kidney injury (AKI) are complications often encountered in the setting of critical illness. Both forms of end-organ injury commonly occur in similar settings of systemic inflammatory response syndrome, shock, and evolving multiple organ dysfunction. Distant organ effects of apparently isolated injuries to the lungs, gut, and kidneys have all been discovered in recent years. In this review of the emerging evidence of deleterious bidirectional organ crosstalk between the lungs and kidney, we will focus on the role of ventilator-induced kidney injury in the pathogenesis of AKI in patients with ALI.