Contributions to nephrology
-
Implementing continuous renal replacement therapy (CRRT) in a intensive care unit (ICU) is a somewhat difficult issue and quiet different from starting a new ventilation mode or a new hemodynamic device. It may indeed require an on-call medical emergency CRRT team as expertise in this field is really a key issue to success. Education for the nursing team is another key point, especially as ongoing or continuous education is changing very quickly. ⋯ Therefore, a nursing group composed of 5-8 nurses who would be taught beforehand was started, and this dedicated group would then teach the rest CRRT Technology and Logistics 355 of the staff nurses. This group exists today and has at least 6-8 meetings/year in which all the problems that must be faced in the implementation of CRRT are dealt with. Here all the steps made by our and other units in this field will be discussed, including an overview of the various protocols implemented and a description of our dedicated nursing group with regard to CRRT.
-
Current practices for renal replacement therapy (RRT) in ICU remain poorly defined. The observational DOse REsponse Multicentre International collaborative initiative (DO-RE-MI) survey addresses the issue of how the different modes of RRT are currently chosen and performed. The primary endpoint of DO-RE-MI will be the delivered dose versus in ICU, 28-day, and hospital mortality, and the secondary endpoint, the hemodynamic response to RRT. Here, we report the first preliminary descriptive analysis after 1-year recruitment. ⋯ Despite a large variability in the criteria of choice of RRT, CVVHDF remains the most used (49%). Clotting and clinical reasons were the most common causes for RRT downtime. In continuous RRT, a large variability in the delivered dose is observed in the majority of patients and often in the same patient from one day to another. Preliminary analysis suggests that in a large number of cases the delivered dose is far from the 'adequate' 35 ml/h/kg.
-
The term pre-renal azotemia (or on occasion 'pre-renal renal failure') is frequently used in textbooks and in the literature to indicate an acute syndrome characterized by the presence of an increase in the blood concentration of nitrogen waste products (urea and creatinine). This syndrome is assumed to be due to loss of glomerular filtration rate but is not considered to be associated with histopathological renal injury. Thus, the term is used to differentiate 'functional' from 'structural' acute kidney injury (AKI) where structural renal injury is taken to indicate the presence of so-called acute tubular necrosis (ATN). ⋯ In such patients, several assumptions associated with the 'pre-renal azotemia paradigm' are violated. In particular, there is no evidence that ATN is the histopathological substrate of septic AKI, there is no evidence that urine tests can discriminate 'functional' from 'structural' AKI, there is no evidence that any proposed differentiation leads or should lead to different treatments, and there is no evidence that relevant experimentation can resolve these uncertainties. Given that septic AKI of critical illness now accounts for close to 50% of cases of severe AKI in developed countries, these observations call into question the validity and usefulness of the 'pre-renal azotemia paradigm' in AKI in general.
-
Sustained low-efficiency dialysis (SLED) is an increasingly popular form of renal replacement therapy for patients with renal failure in the intensive care unit. Advantages of SLED are efficient clearance of small solutes, good hemodynamic tolerability, flexible treatment schedules, and reduced costs. Studies comparing outcomes of SLED with those of other dialysis modalities are being performed.
-
Traditionally the epidemiology of acute renal failure was assessed in patients requiring renal replacement therapy. Recent data emphasized the importance of less severe impairment of kidney function, hence the terminology acute kidney injury (AKI) was introduced. ⋯ Small changes in kidney function have an impact on outcomes and this knowledge has led to the introduction of the terminology AKI, encompassing both discrete and severe impairment of kidney function. The RIFLE classification describes the whole range of AKI and has been validated in multiple cohorts. As a consequence of increasing comorbidity, the incidence of AKI is increasing. The incidence of acute renal failure requiring renal replacement therapy even compares to that of acute lung injury, and up to two thirds of general ICU patients meet RIFLE criteria for AKI.