Neuroscience letters
-
Neuroscience letters · Jun 2014
Descending effect on spinal nociception by amygdaloid glutamate varies with the submodality of noxious test stimulation.
Amygdala has an important role in the processing of primary emotions, such as fear. Additionally, amygdala is involved in processing and modulation of pain. While the amygdala, particularly its central nucleus (CeA), has been shown to contribute to pain control, the descending pain regulation by the CeA is still only partly characterized. ⋯ In contrast, mechanical antinociception lasted longer (>20 min), was predominantly contralateral and reversed by blocking the amygdaloid NMDA receptor. At an antinociceptive dose, amygdaloid glutamate failed to influence motor performance. The results indicate that independent of the brain hemisphere, the spatial extent and duration of the descending antinociceptive effect induced by amygdaloid glutamate varies with the amygdaloid glutamate receptor and the submodality of pain.
-
Neuroscience letters · Jun 2014
Hippocampal vulnerability and subacute response following varied blast magnitudes.
Clinical outcomes from blast neurotrauma are associated with higher order cognitive functions such as memory, problem solving skills and attention. Current literature is limited to a single overpressure exposure or repeated exposures at the same level of overpressure and is focused on the acute response (<3 days). In an attempt to expand the understanding of neuropathological and molecular changes of the subacute response (7 days post injury), we used an established rodent model of blast neurotrauma. ⋯ The gene expression level of glutamate aspartate transporter (GLAST) was upregulated in the low, but downregulated in the high blast group, while no changes were found in the moderate group. Overall, the data shown here provides evidence of a diverse neuroprotective and glial response to various levels of blast exposure. This mechanistic role of neuroprotection is vital in understanding ongoing cellular stress, both at the gene and protein levels, in order to develop interventional studies for the prognosis of injury.