Blood
-
Comparative Study
Hematopoietic and lymphopoietic responses in human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor transgenic mice injected with human GM-CSF.
Using a clonal assay of bone marrow (BM) cells from transgenic mice (Tg-mice) expressing the human granulocyte-macrophage colony-stimulating factor receptor (hGM-CSFR), we found in earlier studies that hGM-CSF alone supported the development not only of granulocyte-macrophage colonies, but also of erythrocytes, megakaryocytes, mast cells, blast cells, and mixed hematopoietic colonies. In this report, we evaluated the in vivo effects of hGM-CSF on hematopoietic and lymphopoietic responses in the hGM-CSFR Tg-mice. Administration of this factor to Tg-mice resulted in dose-dependent increases in numbers of reticulocytes and white blood cells (WBCs) in the peripheral blood. ⋯ The thymus of Tg-mice treated with hGM-CSF exhibited a dose-dependent shrinkage and a remarkable decrease in CD4+ CD8+ cells. Thus, hGM-CSF stimulated not only myelopoiesis but also erythropoiesis and megakaryopoiesis of hGM-CSFR Tg-mice in vivo, in accordance with our reported in vitro findings. In addition, hGM-CSF affected the development of lymphoid cells, including natural killer cells of these Tg-mice.
-
The occurrence of non-Hodgkin's lymphoma (NHL) is the most serious complication of Sjogren's syndrome (SS). We performed a study of 16 NHLs occurring in patients with an underlying SS. These lymphomas arose not only in salivary glands (7 cases) but also in other mucosal extranodal sites (the stomach [4 cases], the lung [3 cases], the skin [3 cases], the buccal mucosa [1 case], the thymus [1 case]) and in nodal sites (8 cases). ⋯ In conclusion, lymphomas occurring in patients with an underlying SS are in most cases MZL. These lymphomas are not associated with viruses known to be present in other types of lymphomas. Some of the translocations or mutations of oncogenes or antioncogenes described in other lymphomas are detected in SS-associated lymphomas.
-
Recent reports have described families in whom a combination of elevated serum ferritin not related to iron overload and congenital nuclear cataract is transmitted as an autosomal dominant trait. We have studied the molecular pathogenesis of hyperferritinemia in two families showing different phenotypic expression of this new genetic disorder. Serum ferritin levels ranged from 950 to 1,890 microg/L in affected individuals from family 1, and from 366 to 635 microg/L in those from family 2. ⋯ The direct relationship between the degree of hyperferritinemia and severity of cataract suggests that this latter is the consequence of excessive ferritin production within the lens fibers. These findings provide strong evidence that serum ferritin is a byproduct of intracellular ferritin synthesis and that the L-subunit gene on chromosome 19 is the source of glycosylated serum ferritin. From a practical standpoint, this new genetic disorder should be taken into account by clinicians when facing a high serum ferritin in an apparently healthy person.
-
The immune-mediated graft-versus-leukemia effect is important to prevent relapse after allogeneic progenitor cell transplantation. This process requires engraftment of donor immuno-competent cells. The objective of this study was to assess the feasibility of achieving engraftment of allogeneic peripheral blood or bone marrow progenitor cell after purine analog containing nonmyeloablative chemotherapy. ⋯ Chimerism analysis of bone marrow cells in 6 of 8 patients achieving remission showed > or = 90% donor cells between 14 and 30 days postinfusion, and 3 of 4 patients remaining in remission between 60 and 90 days continued to have > or = 80% donor cells. We conclude that purine analog-containing nonmyeloablative regimens allow engraftment of HLA-compatible hematopoietic progenitor cells. This approach permits us to explore the graft-versus-leukemia effect without the toxicity of myeloablative therapy and warrants further study in patients with leukemia who are ineligible for conventional transplantation with myeloablative regimens either because of age or concurrent medical conditions.
-
The etiology of stroke in sickle cell disease is unclear, but may involve abnormal red blood cell (RBC) adhesion to the vascular endothelium and altered vasomotor tone regulation. Therefore, we examined both the adhesion of sickle (SS)-RBCs to cerebral microvessels and the effect of SS-RBCs on cerebral blood flow when the nitric oxide (NO) pathway was inhibited. The effect of SS-RBCs was studied in the rat cerebral microcirculation using either a cranial window for direct visualization of infused RBCs or laser Doppler flowmetry (LDF) to measure RBC flow. ⋯ Total cessation of flow in all observed cerebral microvessels occurred in 3 of 4 rats within 15 minutes after infusion of SS-RBCs. We conclude that the NO pathway is critical in maintaining cerebral blood flow in the presence of SS-RBCs in this rat model. In addition, the enhanced adhesion of SS-RBCs to rat brain microvessels may contribute to cerebral vaso-occlusion either directly, by disrupting blood flow, or indirectly, by disturbing the vascular endothelium.