International journal of radiation oncology, biology, physics
-
Int. J. Radiat. Oncol. Biol. Phys. · Mar 2005
Adequate margins for random setup uncertainties in head-and-neck IMRT.
To investigate the effect of random setup uncertainties on the highly conformal dose distributions produced by intensity-modulated radiotherapy (IMRT) for clinical head-and-neck cancer patients and to determine adequate margins to account for those uncertainties. ⋯ The margins to account for random setup uncertainties, in our clinical IMRT solution, should be 1.5 mm and 3.0 mm in the case of sigma = 2 mm and sigma = 4 mm, respectively, for the CTV(primary). Larger margins (5.0 mm), however, should be applied to the CTV(elective), if the goal of treatment is a V(95) value of at least 99%.
-
Int. J. Radiat. Oncol. Biol. Phys. · Mar 2005
Methodology for biologically-based treatment planning for combined low-dose-rate (permanent implant) and high-dose-rate (fractionated) treatment of prostate cancer.
The combination of permanent low-dose-rate interstitial implantation (LDR-BRT) and external beam radiotherapy (EBRT) has been used in the treatment of clinically localized prostate cancer. While a high radiation dose is delivered to the prostate in this setting, the actual biologic dose equivalence compared to monotherapy is not commonly invoked. We describe methodology for obtaining the fused dosimetry of this combined treatment and assigning a dose equivalence which in turn can be used to develop desired normal tissue and target constraints for biologic-based treatment planning. ⋯ We describe new methodology for biologically based treatment planning for patients who receive combined low-dose-rate brachytherapy and external beam radiotherapy for prostate cancer. Using relevant mathematical tools, we demonstrate the feasibility of fusing dose distributions from each treatment for this combined regimen, which can then be expressed as isoeffective dose distributions. Based on this information, dose constraints for the rectum and urethra are described which could be used for planning such combination regimens.
-
Int. J. Radiat. Oncol. Biol. Phys. · Mar 2005
The pattern of lymphatic metastasis of breast cancer and its influence on the delineation of radiation fields.
The delineation of radiation fields should cover the clinical target volume (CTV) and minimally irradiate the surrounding normal tissues and organs. This study was designed to explore the pattern of lymphatic metastasis of breast cancer and indications for radiotherapy after radical or modified radical mastectomy and to discuss the rational delineation of radiation fields. ⋯ According to our data, we suggest that the radiation field for internal mammary lymph nodes should exclude the fourth and fifth intercostal spaces, which may help to reduce the radiation damage to heart. It is unnecessary to irradiate the supraclavicular lymph nodes for the patients with negative axillary level III nodes, even with positive level I and level II nodes.