International journal of radiation oncology, biology, physics
-
Int. J. Radiat. Oncol. Biol. Phys. · Sep 2017
Comparative StudyVariabilities of Magnetic Resonance Imaging-, Computed Tomography-, and Positron Emission Tomography-Computed Tomography-Based Tumor and Lymph Node Delineations for Lung Cancer Radiation Therapy Planning.
To investigate interobserver delineation variability for gross tumor volumes of primary lung tumors and associated pathologic lymph nodes using magnetic resonance imaging (MRI), and to compare the results with computed tomography (CT) alone- and positron emission tomography (PET)-CT-based delineations. ⋯ Although MRI-based contouring showed overall larger variability than PET-CT, contouring variability depended on the interface type and was not significantly different between modalities, despite the limited observer experience with MRI. Multimodality imaging and combining different imaging characteristics might be the best approach to define the tumor volume most accurately.
-
Int. J. Radiat. Oncol. Biol. Phys. · Sep 2017
Evaluating Which Dose-Function Metrics Are Most Critical for Functional-Guided Radiation Therapy.
Four-dimensional (4D) computed tomography (CT) ventilation imaging is increasingly being used to calculate lung ventilation and implement functional-guided radiation therapy in clinical trials. There has been little exhaustive work evaluating which dose-function metrics should be used for treatment planning and plan evaluation. The purpose of our study was to evaluate which dose-function metrics best predict for radiation pneumonitis (RP). ⋯ A full range of dose-function metrics and functional thresholds was examined. The calculated AUC values for the most predictive functional models occupied a narrow range (0.66-0.70), and all showed notable improvements over AUC from traditional lung dose metrics (0.55). Identifying the combinations most predictive of grade 3+ RP provides valuable data to inform the functional-guided radiation therapy process.