Neurochemical research
-
Neurochemical research · Oct 2007
ReviewLRRK2 low-penetrance mutations (Gly2019Ser) and risk alleles (Gly2385Arg)-linking familial and sporadic Parkinson's disease.
The identification of mutations in the leucine-rich repeat kinase 2 (LRRK2) gene as a cause of autosomal dominant Parkinson's disease (PD) was a major step forward in the genetic dissection of this disorder. However, what makes LRRK2 unique among the known PD-causing genes is that a low-penetrance mutation, Gly2019Ser, is a frequent determinant not only of familial, but also of sporadic PD in several populations from South Europe, North Africa and Middle East. ⋯ Currently, the Gly2019Ser and Gly2385Arg variants represent the most relevant PD-causing mutation and risk allele, respectively, linking the etiology of the familial and the sporadic forms of this disease. Understanding how the dysfunction of LRRK2 protein leads to neurodegeneration might provide crucial insights for unraveling the molecular mechanisms of PD and for developing disease-modifying therapies.
-
Following trauma or ischemia to the central nervous system (CNS), there is a marked increase in the expression of cell cycle-related proteins. This up-regulation is associated with apoptosis of post-mitotic cells, including neurons and oligodendrocytes, both in vitro and in vivo. ⋯ Treatment with cell cycle inhibitors in CNS injury models inhibits glial scar formation and neuronal cell death, resulting in substantially decreased lesion volumes and improved behavioral recovery. Here we critically review the role of cell cycle pathways in the pathophysiology of experimental stroke, traumatic brain injury and spinal cord injury, and discuss the potential of cell cycle inhibitors as neuroprotective agents.
-
Neurochemical research · Apr 2007
ReviewGenetic influences on outcome following traumatic brain injury.
Several genes have been implicated as influencing the outcome following traumatic brain injury (TBI). Currently the most extensively studied gene has been APOE. APOE can influence overall and rehabilitation outcome, coma recovery, risk of posttraumatic seizures, as well as cognitive and behavioral functions following TBI. ⋯ Inflammation which is a prominent component in the pathophysiological cascade initiated by TBI, is in part is mediated by the interleukin genes, while apoptosis that occurs as a consequence of TBI may be modulated by polymorphisms of the p53 gene. The ACE gene may affect TBI outcome via mechanisms of cerebral blood flow and/or autoregulation and the CACNA1A gene may exert an influence via the calcium channel and its effect on delayed cerebral edema. Although several potential genes that may influence outcome following TBI have been identified, future investigations are needed to validate these genetic studies and identify new genes that might influence outcome following TBI.
-
Neurochemical research · Dec 2005
ReviewEpileptogenesis after experimental focal cerebral ischemia.
Cerebrovascular diseases are one of the most common causes of epilepsy in adults, and the incidence of stroke-induced epileptogenesis is increasing as the population ages. The mechanisms that lead to stroke-induced epileptogenesis in a subpopulation of patients, however, are still poorly understood. ⋯ Here we summarize data from models in which epileptogenesis has been studied after focal ischemia; photothrombosis, middle cerebral artery (MCA) occlusion with filament, and endothelin-1-induced MCA occlusion. Analysis of the data indicates that neurobiologic changes occurring during stroke-induced epileptogenesis share some similarities to those induced by status epilepticus or traumatic brain injury.
-
Neurochemical research · Jan 2004
ReviewBrain amino acids during hyponatremia in vivo: clinical observations and experimental studies.
Hyponatremia is a highly morbid condition, present in a wide range of human pathologies, that exposes patients to encephalopathic complication and the risk of permanent brain damage and death. Treating hyponatremia has proved to be difficult and still awaits safe management, avoiding the morbid sequelae of demyelinizing and necrotic lesions associated with the use of hypertonic solutions. During acute and chronic hyponatremia in vivo, the brain extrudes the excessive water by decreasing its content of electrolytes and organic osmolytes. ⋯ Additionally, new data are provided concerning changes in amino acid levels in different regions of the central nervous system after chronic hyponatremia. Results favor the role of taurine, glutamine, glutamate, and aspartate as the main amino acid osmolytes involved in the brain adaptive response to hyponatremia in vivo. Deeper knowledge of the adaptive overall and cellular brain mechanisms activated during hyponatremia would lead to the design of safer therapies for the hyponatremic patient.