Journal of medical virology
-
To investigate the evolutionary history of the recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China, a total of 70 genomes of virus strains from China and elsewhere with sampling dates between 24 December 2019 and 3 February 2020 were analyzed. To explore the potential intermediate animal host of the SARS-CoV-2 virus, we reanalyzed virome data sets from pangolins and representative SARS-related coronaviruses isolates from bats, with particular attention paid to the spike glycoprotein gene. We performed phylogenetic, split network, transmission network, likelihood-mapping, and comparative analyses of the genomes. ⋯ We also identified a unique peptide (PRRA) insertion in the human SARS-CoV-2 virus, which may be involved in the proteolytic cleavage of the spike protein by cellular proteases, and thus could impact host range and transmissibility. Interestingly, the coronavirus carried by pangolins did not have the RRAR motif. Therefore, we concluded that the human SARS-CoV-2 virus, which is responsible for the recent outbreak of COVID-19, did not come directly from pangolins.
-
Meta Analysis
Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: A single arm meta-analysis.
We aim to summarize reliable evidence of evidence-based medicine for the treatment and prevention of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by analyzing all the published studies on the clinical characteristics of patients with SARS-CoV-2. ⋯ Fever and cough are the most common symptoms in patients with SARS-CoV-2 infection, and most of these patients have abnormal chest CT examination. Several people have muscle soreness or fatigue as well as ARDS. Diarrhea, hemoptysis, headache, sore throat, shock, and other symptoms are rare. The case fatality rate of patients with SARS-CoV-2 infection is lower than that of Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). This meta-analysis also has limitations, so the conclusions of this Meta-analysis still need to be verified by more relevant studies with more careful design, more rigorous execution, and larger sample size.
-
Last December 2019, a new virus, named novel Coronavirus (COVID-2019) causing many cases of severe pneumonia was reported in Wuhan, China. The virus knowledge is limited and especially about COVID-2019 pathogenesis. The Open Reading Frame 1ab (ORF1ab) of COVID-2019 has been analyzed to evidence the presence of mutation caused by selective pressure on the virus. ⋯ The positive selective pressure could account for some clinical features of this virus compared with severe acute respiratory syndrome (SARS) and Bat SARS-like CoV. The stabilizing mutation falling in the endosome-associated-protein-like domain of the nsp2 protein could account for COVID-2019 high ability of contagious, while the destabilizing mutation in nsp3 proteins could suggest a potential mechanism differentiating COVID-2019 from SARS. These data could be helpful for further investigation aimed to identify potential therapeutic targets or vaccine strategy, especially in the actual moment when the epidemic is ongoing and the scientific community is trying to enrich knowledge about this new viral pathogen.
-
Starting around December 2019, an epidemic of pneumonia, which was named COVID-19 by the World Health Organization, broke out in Wuhan, China, and is spreading throughout the world. A new coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the Coronavirus Study Group of the International Committee on Taxonomy of Viruses was soon found to be the cause. At present, the sensitivity of clinical nucleic acid detection is limited, and it is still unclear whether it is related to genetic variation. ⋯ Although overall variation in open-reading frame (ORF) regions is low, 13 variation sites in 1a, 1b, S, 3a, M, 8, and N regions were identified, among which positions nt28144 in ORF 8 and nt8782 in ORF 1a showed mutation rate of 30.53% (29/95) and 29.47% (28/95), respectively. These findings suggested that there may be selective mutations in SARS-COV-2, and it is necessary to avoid certain regions when designing primers and probes. Establishment of the reference sequence for SARS-CoV-2 could benefit not only biological study of this virus but also diagnosis, clinical monitoring and intervention of SARS-CoV-2 infection in the future.