Journal of medical virology
-
Case Reports
Persistent viral RNA positivity during the recovery period of a patient with SARS-CoV-2 infection.
As an emerging infectious disease, the clinical course and virological course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain to be further investigated. In this case report, we described a case of SARS-CoV-2 infection with the clinical course for more than 2 months. This patient had recovered from pneumonia after treatment. ⋯ In addition, the viral RNA was detected in multiple types of specimens with extremely high titers in the saliva. In conclusion, these findings indicate that SARS-CoV-2 can cause a long clinical course. The coexistence of viral RNA and viral-specific antibodies may imply an immune evasion of SARS-CoV-2 from the host's immune system.
-
A pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading throughout the world. Though molecular diagnostic tests are the gold standard for COVID-19, serological testing is emerging as a potential surveillance tool, in addition to its complementary role in COVID-19 diagnostics. Indubitably quantitative serological testing provides greater advantages than qualitative tests but today there is still little known about serological diagnostics and what the most appropriate role quantitative tests might play. ⋯ All COVID-19 patients were hospitalized in San Giovanni di Dio Hospital (Florence, Italy) and had a positive oro/nasopharyngeal swab reverse-transcription polymerase chain reaction result. The highest sensitivity with a very good specificity performance was reached at a cutoff value of 10.0 AU/mL for IgM and of 7.1 for IgG antibodies, hence near to the manufacturer's cutoff values of 10 AU/mL for both isotypes. The receiver operating characteristic curves showed area under the curve values of 0.918 and 0.980 for anti-SARS CoV-2 antibodies IgM and IgG, respectively. iFlash1800 CLIA analyzer has shown highly accurate results for the anti-SARS-CoV-2 antibodies profile and can be considered an excellent tool for COVID-19 diagnostics.
-
We have applied mathematical modeling to investigate the infections of the ongoing coronavirus disease-2019 (COVID-19) pandemic caused by SARS-CoV-2 virus. We first validated our model using the well-studied influenza viruses and then compared the pathogenesis processes between the two viruses. The interaction between host innate and adaptive immune responses was found to be a potential cause for the higher severity and mortality in COVID-19 patients. ⋯ Stronger adaptive immunity in COVID-19 patients can potentially lead to longer recovery time and more severe secondary complications. Based on our analysis, delaying the onset of adaptive immune responses during the early phase of infections may be a potential treatment option for high-risk COVID-19 patients. Suppressing the adaptive immune response temporarily and avoiding its interference with the innate immune response may allow the innate immunity to more efficiently clear the virus.