Journal of medical virology
-
An optimal clinical specimen for accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by minimizing the usage of consumables and reduce hazard exposure to healthcare workers is an urgent priority. The diagnostic performance of SARS-CoV-2 detection between healthcare worker-collected nasopharyngeal and oropharyngeal (NP + OP) swabs and patient performed self-collected random saliva was assessed. Paired NP + OP swabs and random saliva were collected and processed within 48 h of specimen collection from two cohort studies which recruited 562 asymptomatic adult candidates. ⋯ The estimated sensitivity and specificity of random saliva were higher than NP + OP swabs (95.0; 99.9 vs. 72.2; 99.4). The Ct values of ORF1a and N genes were significantly lower in random saliva compared to NP + OP swabs specimens. Our findings demonstrate that random saliva is an alternative diagnostic specimen for the detection of SARS-CoV-2. Self-collected random oropharyngeal saliva is a valuable specimen that provides accurate SARS-CoV-2 surveillance testing of a community.
-
The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) urgently requires an effective vaccine for prevention. In this study, 66 epitopes containing pentapeptides of SARS-CoV-2 spike protein in the IEDB database were compared with the amino acid sequence of SARS-CoV-2 spike protein, and 66 potentially immune-related peptides of SARS-CoV-2 spike protein were obtained. Based on the single-nucleotide polymorphisms analysis of spike protein of 1218 SARS-CoV-2 isolates, 52 easily mutated sites were identified and used for vaccine epitope screening. ⋯ The results of vaccine candidate sequences screening suggested that sequences (without linker, with linker GGGSGGG, EAAAK, GPGPG, and KK, respectively) were the best. The proteins translated by these sequences were relatively stable, with a high antigenic index and good biological activity. Our study provided vaccine candidate epitopes and sequences for the research of the SARS-CoV-2 vaccine.
-
We aimed to evaluate the rates of false-positive test results of three rapid diagnostic tests (RDTs) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G (IgG) and IgM detection. Two serum panels from patients hospitalized in Paris, France, and from patients living in Bangui, Central African Republic, acquired before the 2019 COVID-19 outbreak, were tested by 3 CE IVD-labeled RDTs for SARS-CoV-2 serology (BIOSYNEX® COVID-19 BSS [IgG/IgM]; SIENNA™ COVID-19 IgG/IgM Rapid Test Cassette; NG-Test® IgG-IgM COVID-19). Detectable IgG or IgM reactivities could be observed in 31 (3.43%) of the 902 IgG and IgM bands of the 3 RDTs used with all pre-epidemic sera. The frequencies of IgG/IgM reactivities were similar for European (3.20%) and African (3.55%) sera. ⋯ The test NG-Test® IgG-IgM COVID-19 showed the highest rates of IgG or IgM reactivities (6.12% [18/294]), while the test BIOSYNEX® COVID-19 BSS (IgG/IgM) showed the lowest rate (1.36% [4/294]). Some combinations of 2 RDTs in series allowed decreasing significantly the risk of false-positive test results. Our observations point to the risk of false-positive reactivities when using currently available RDT for SARS-CoV-2 serological screening, especially for the IgM band, even if the test is CE IVD-labeled and approved by national health authorities, and provide the rational basis for confirmatory testing by another RDT in case of positive initial screening.
-
Detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is key to the clinical and epidemiological assessment of CoVID-19. We cross-validated manual and automated high-throughput testing for SARS-CoV-2-RNA, evaluated SARS-CoV-2 loads in nasopharyngeal-oropharyngeal swabs (NOPS), lower respiratory fluids, and plasma, and analyzed detection rates after lockdown and relaxation measures. ⋯ Manual and automated assays significantly correlated qualitatively and quantitatively. Following a successful lockdown, declining positive predictive values require independent dual-target confirmation for reliable assessment. Confirmatory and quantitative follow-up testing should be obtained within <5 days and consider lower respiratory fluids in symptomatic patients with SARS-CoV-2-negative NOPS.