Leukemia research
-
Comparative Study
Mutational profiling of therapy-related myelodysplastic syndromes and acute myeloid leukemia by next generation sequencing, a comparison with de novo diseases.
In this study we used a next generation sequencing-based approach to profile gene mutations in therapy-related myelodysplastic syndromes (t-MDS) and acute myeloid leukemia (t-AML); and compared these findings with de novo MDS/AML. Consecutive bone marrow samples of 498 patients, including 70 therapy-related (28 MDS and 42 AML) and 428 de novo (147 MDS and 281 AML) were analyzed using a modified-TruSeq Amplicon Cancer Panel (Illumina) covering mutation hotspots of 53 genes. Overall, mutation(s) were detected in 58.6% of t-MDS/AML and 56.8% of de novo MDS/AML. ⋯ In summary, t-MDS/AML shows a mutation profile different from their de novo counterparts. TP53 mutations are highly and similarly prevalent in t-MDS and t-AML but mutations in genes other than TP53 were more frequent in t-AML than t-MDS. The molecular genetic profiling further expands our understanding in this group of clinically aggressive yet heterogeneous myeloid neoplasms.
-
Altered activities of ligands belonging to tumour necrosis factor (TNF) superfamily, namely B-cell activating factor (BAFF), a proliferation-inducing ligand (APRIL) and apoptosis inducing ligand (TRAIL) were demonstrated in several haematological diseases including acute lymphoblastic leukaemia (ALL). BAFF, APRIL and TRAIL provide crucial survival signals to immature, naive and activated B cells. These ligands are capable of activating a broad spectrum of intracellular signalling cascades that can either induce apoptosis or protect from programmed cell death. ⋯ Furthermore, we demonstrated statistically significant differences in concentrations of APRIL between CR MRD-negative and CR, MRD-positive ALL patients. Notably detection of higher concentrations of APRIL was associated with shorter leukaemia-free survival and overall survival. Altogether, our data indicate that APRIL can play an important role in the pathogenesis of ALL and the measurement of APRIL levels can improve prognostication in ALL patients.
-
Bone marrow failure syndromes (BMFS) are characterized by a failure of the hematopoietic stem cells to produce adequate blood cells, resulting in either cytopenia (defect in one or more blood cell lineages) or pancytopenia (defect in all blood cell lineages). BMFS can be inherited or acquired. ⋯ The Aplastic Anemia and MDS International Foundation (AA&MDSIF) is an independent nonprofit organization whose mission is to help patients and family members cope with BMFS. Here, we summarize novel scientific discoveries in several BMFS that were presented at the 4th International Bone Marrow Failure Disease Scientific Symposium 2014 that AA&MDSIF sponsored on March 27-28, 2014, in Rockville, MD.
-
Review Case Reports
MLL partner genes in secondary acute lymphoblastic leukemia: report of a new partner PRRC1 and review of the literature.
Secondary acute lymphoblastic leukemia (sALL) following chemotherapy and/or radiotherapy of previous malignancies represents 2-10% of all cases of ALL. A 72-year-old female patient was diagnosed with acute lymphoblastic leukemia following chemotherapy for a diffuse large B cell lymphoma. ⋯ Sixty-five cases of sALL associated with 11q23/MLL rearrangement, including 47 with a t(4;11)(q21;q23), were retrieved from the literature. Drug regimen used to treat the primary neoplasm was available for 54 patients; 52 had received a topoisomerase II inhibitor, known to induce MLL rearrangement.
-
TP53 mutations are found in 5-10% of MDS and AML, where they are generally associated with complex karyotype and an overall poor prognosis. However, the impact of TP53 mutations in MDS treated with azacitidine (AZA) remains unclear. We analyzed TP53 mutations in 62 patients with high risk MDS or AML treated with AZA. ⋯ By multivariate analysis, only TP53 mutational status (HR 2.89 (95% confidence interval 1.38-6.04; p=0.005) retained statistical significance for OS. Results were similar when the analysis was restricted to MDS and CMML patients, excluding AML (HR=2.46 (95% confidence interval: 1.1-6.4); p=0.04)). Thus, TP53 mutations strongly correlated with poorer survival in higher risk MDS and AML treated with AZA.