The Journal of physiology
-
The Journal of physiology · Aug 2020
Intermittent hypercapnic hypoxia induces respiratory hypersensitivity to fentanyl accompanied by tonic respiratory depression by endogenous opioids.
Sleep apnoea increases susceptibility to opioid-induced respiratory depression (OIRD). Endogenous opioids are implicated as a contributing factor in sleep apnoea. Rats exposed to sleep-phase chronic intermittent hypercapnic hypoxia (CIHH) for 7 days exhibited exaggerated OIRD to systemic fentanyl both while anaesthetized and artificially ventilated and while conscious and breathing spontaneously, implicating heightened CNS inhibitory efficacy of fentanyl. CIHH also induced tonic endogenous opioid suppression of neural inspiration. Sleep-related episodes of hypercapnic hypoxia, as in sleep apnoea, promote hypersensitivity to OIRD, with tonic respiratory depression by endogenous opioids implicated as a potential underlying cause. ⋯ Sleep apnoea (SA) increases opioid-induced respiratory depression (OIRD) and lethality. To test the hypothesis that this results from chronic intermittent bouts of hypercapnic hypoxia (CIHH) accompanying SA, we compared OIRD across continuously normoxic control rats and rats exposed to sleep-phase (8 h/day) CIHH for 1 week. OIRD sensitivity was first assessed in anaesthetized (urethane/α-chloralose), vagotomized and artificially ventilated rats by recording phrenic nerve activity (PNA) to index neural inspiration and quantify PNA burst inhibition to graded doses (0, 2, 20, 50 μg kg-1 , i.v.) of the synthetic opioid fentanyl. Fentanyl dose-dependently reduced PNA burst frequency (P = 0.0098-0.0001), while increasing the duration of burst quiescence at 50 μg kg-1 (P < 0.0001, n = 5-6/group/dose). CIHH shifted the fentanyl dose-phrenic burst frequency response curve to the left (P = 0.0163) and increased the duration of burst quiescence (P < 0.0001). During fentanyl recovery, PNA burst width was increased relative to baseline in normoxic and CIHH rats. Systemic naloxone (1 mg kg-1 , i.v.) reversed fentanyl-induced PNA arrest in both groups (P = 0.0002), and increased phrenic burst amplitude above baseline (P = 0.0113) in CIHH rats only. Differential sensitivity to anaesthesia as a cause of CIHH-related OIRD hypersensitivity was excluded by observing in conscious spontaneously breathing rats that fentanyl at 20 μg kg-1 (i.v.), which silenced PNA in anaesthetized rats, differentially increased breathing variability in normoxic versus CIHH rats (P = 0.0427), while significantly reducing breathing frequency (P < 0.0001) and periodicity (P = 0.0003) in CIHH rats only. Findings indicate that CIHH increased OIRD sensitivity, with tonic inspiratory depression by endogenous opioids as a likely contributing cause.
-
The Journal of physiology · Jun 2020
Nitric oxide metabolism in the human placenta during aberrant maternal inflammation.
Nitric oxide (NO) is a gasotransmitter with important physiological and pathophysiological roles in pregnancy. There is limited information available about the sources and metabolism of NO and its bioactive metabolites (NOx) in both normal and complicated pregnancies. The present study characterized and quantified endogenous NOx in human and mouse placenta following determination of the stability of exogenous NOx in placental homogenates. NOx have differential stability in placental homogenates. NO and iron nitrosyl species (FeNOs), are relatively unstable in placental homogenates from normal placentas. Exogenous NO, nitrite and nitrosothiols react with placental homogenates to form iron nitrosyl complexes. FeNOs were also detected endogenously in mouse and human placenta. NOx levels in placental villous tissue are increased in fetal growth restriction vs. placentas from women with normal pregnancies, particularly in fetal growth restriction associated with pre-eclampsia. Villitis was not associated, however, with an increase in NOx levels in either normotensive or pre-eclamptic placentas. The results call for further investigation of FeNOs in normal and complicated pregnancies. ⋯ Nitric oxide (NO) is a gasotransmitter with important roles in pregnancy under both physiological and pathophysiological conditions. Although products of NO metabolism (NOx) also have significant bioactivity, little is known about the role of NO and NOx under conditions of aberrant placental inflammation during pregnancy. An ozone-based chemiluminescence approach was used to investigate the stability and metabolic fate of NOx in human placental homogenates from uncomplicated pregnancies in healthy mothers compared to that in placental tissue from normotensive and pre-eclamptic pregnancies complicated with fetal growth restriction (FGR) with and without villitis of unknown aetiology. We hypothesized that placental NOx would be increased in FGR vs. normal tissue, and be further increased in villitis vs. non-villitis placentas. Findings indicate that nitrate, nitrite and nitrosothiols, but not NO or iron nitrosyl species (FeNOs), are relatively stable in placental homogenates from normal placentas, and that NO, nitrite and nitrosothiols react with placental homogenates to form iron nitrosyl complexes. Furthermore, NOx levels in placental villous tissue are increased in FGR vs. placentas from women with normal pregnancies, particularly in FGR associated with pre-eclampsia. However, in contrast to our hypothesis, villitis was not associated with an increase in NOx levels in either normotensive or pre-eclamptic placentas. Our results also strongly support the involvement of FeNOs in both mouse and human placenta, and call for their further study as a critical mechanistic link between pre-eclampsia and fetal growth restriction.
-
The Journal of physiology · Mar 2020
Randomized Controlled TrialHigh-definition transcranial direct current stimulation dissociates fronto-visual theta lateralization during visual selective attention.
Visual attention involves discrete multispectral oscillatory responses in visual and 'higher-order' prefrontal cortices. Prefrontal cortex laterality effects during visual selective attention are poorly characterized. High-definition transcranial direct current stimulation dynamically modulated right-lateralized fronto-visual theta oscillations compared to those observed in left fronto-visual pathways. Increased connectivity in right fronto-visual networks after stimulation of the left dorsolateral prefrontal cortex resulted in faster task performance in the context of distractors. Our findings show clear laterality effects in theta oscillatory activity along prefrontal-visual cortical pathways during visual selective attention. ⋯ Studies of visual attention have implicated oscillatory activity in the recognition, protection and temporal organization of attended representations in visual cortices. These studies have also shown that higher-order regions such as the prefrontal cortex are critical to attentional processing, but far less is understood regarding prefrontal laterality differences in attention processing. To examine this, we selectively applied high-definition transcranial direct current stimulation (HD-tDCS) to the left or right dorsolateral prefrontal cortex (DLPFC). We predicted that HD-tDCS of the left versus right prefrontal cortex would differentially modulate performance on a visual selective attention task, and alter the underlying oscillatory network dynamics. Our randomized crossover design included 27 healthy adults that underwent three separate sessions of HD-tDCS (sham, left DLPFC and right DLPFC) for 20 min. Following stimulation, participants completed an attention protocol during magnetoencephalography. The resulting oscillatory dynamics were imaged using beamforming, and peak task-related neural activity was subjected to dynamic functional connectivity analyses to evaluate the impact of stimulation site (i.e. left and right DLPFC) on neural interactions. Our results indicated that HD-tDCS over the left DLPFC differentially modulated right fronto-visual functional connectivity within the theta band compared to HD-tDCS of the right DLPFC and further, specifically modulated the oscillatory response for detecting targets among an array of distractors. Importantly, these findings provide network-specific insight into the complex oscillatory mechanisms serving visual selective attention.
-
The Journal of physiology · Mar 2020
Mechanisms underlying the stimulatory effect of inhaled sulfur dioxide on vagal bronchopulmonary C-fibres.
Brief inhalation of SO2 of concentration >500 p.p.m. triggered a pronounced stimulatory effect on vagal bronchopulmonary C-fibres in anaesthetized rats. This stimulatory effect was drastically diminished by a pretreatment with NaHCO3 that raised the baseline arterial pH, suggesting a possible involvement of acidification of airway fluid and/or tissue generated by inhaled SO2 . The stimulation was completely abolished by pretreatment with antagonists of both acid-sensing ion channels and transient receptor potential vanilloid type-1 receptors, indicating that this effect was caused by acid activation of these cation channels expressed in airway sensory nerves. This conclusion was further supported by the results obtained from studies in isolated rat vagal bronchopulmonary sensory neurones and also in the cough response to SO2 inhalation challenge in awake mice. These results provide new insight into the underlying mechanism of harmful irritant effects in the respiratory tract caused by accidental exposure to a high concentration of SO2 . ⋯ Inhalation of sulfur dioxide (SO2 ) triggers coughs and reflex bronchoconstriction, and stimulation of vagal bronchopulmonary C-fibres is primarily responsible. However, the mechanism underlying this stimulatory effect is not yet fully understood. In this study, we tested the hypothesis that the C-fibre stimulation was caused by SO2 -induced local tissue acidosis in the lung and airways. Single-unit activities of bronchopulmonary C-fibres in response to inhalation challenges of SO2 (500-1500 p.p.m., 10 breaths) were measured in anaesthetized rats. Inhalation of SO2 reproducibly induced a pronounced and sustained stimulation (lasting for 15-60 s) of pulmonary C-fibres in a concentration-dependent manner. This stimulatory effect was significantly attenuated by an increase in arterial pH generated by infusion of sodium bicarbonate (NaHCO3 ), and completely abrogated by a combined pretreatment with amiloride (an antagonist of acid-sensing ion channels, ASICs) and AMG8910 (a selective antagonist of the transient receptor potential vanilloid type-1 receptor, TRPV1). Furthermore, in isolated rat vagal pulmonary sensory neurones, perfusion of an aqueous solution of SO2 evoked a transient increase in the intracellular Ca2+ concentration; this response was also markedly diminished by a pretreatment with amiloride and AMG8910. In addition, inhalation of SO2 consistently evoked coughs in awake mice; responses were significantly smaller in TRPV1-/- mice than in wild-type mice, and almost completely abolished after a pretreatment with amiloride in TRPV1-/- mice. These results suggested that the stimulatory effect of inhaled SO2 on bronchopulmonary C-fibres was generated by acidification of fluid and/or tissue in the lung and airways, which activated both ASICs and TRPV1 expressed in these sensory nerves.
-
The Journal of physiology · Feb 2020
Synaptic cleft microenvironment influences potassium permeation and synaptic transmission in hair cells surrounded by calyx afferents in the turtle.
In central regions of vestibular semicircular canal epithelia, the [K+ ] in the synaptic cleft ([K+ ]c ) contributes to setting the hair cell and afferent membrane potentials; the potassium efflux from type I hair cells results from the interdependent gating of three conductances. Elevation of [K+ ]c occurs through a calcium-activated potassium conductance, GBK , and a low-voltage-activating delayed rectifier, GK(LV) , that activates upon elevation of [K+ ]c . Calcium influx that enables quantal transmission also activates IBK , an effect that can be blocked internally by BAPTA, and externally by a CaV 1.3 antagonist or iberiotoxin. Elevation of [K+ ]c or chelation of [Ca2+ ]c linearizes the GK(LV) steady-state I-V curve, suggesting that the outward rectification observed for GK(LV) may result largely from a potassium-sensitive relief of Ca2+ inactivation of the channel pore selectivity filter. Potassium sensitivity of hair cell and afferent conductances allows three modes of transmission: quantal, ion accumulation and resistive coupling to be multiplexed across the synapse. ⋯ In the vertebrate nervous system, ions accumulate in diffusion-limited synaptic clefts during ongoing activity. Such accumulation can be demonstrated at large appositions such as the hair cell-calyx afferent synapses present in central regions of the turtle vestibular semicircular canal epithelia. Type I hair cells influence discharge rates in their calyx afferents by modulating the potassium concentration in the synaptic cleft, [K+ ]c , which regulates potassium-sensitive conductances in both hair cell and afferent. Dual recordings from synaptic pairs have demonstrated that, despite a decreased driving force due to potassium accumulation, hair cell depolarization elicits sustained outward currents in the hair cell, and a maintained inward current in the afferent. We used kinetic and pharmacological dissection of the hair cell conductances to understand the interdependence of channel gating and permeation in the context of such restricted extracellular spaces. Hair cell depolarization leads to calcium influx and activation of a large calcium-activated potassium conductance, GBK , that can be blocked by agents that disrupt calcium influx or buffer the elevation of [Ca2+ ]i , as well as by the specific KCa 1.1 blocker iberiotoxin. Efflux of K+ through GBK can rapidly elevate [K+ ]c , which speeds the activation and slows the inactivation and deactivation of a second potassium conductance, GK(LV) . Elevation of [K+ ]c or chelation of [Ca2+ ]c linearizes the GK(LV) steady-state I-V curve, consistent with a K+ -dependent relief of Ca2+ inactivation of GK(LV) . As a result, this potassium-sensitive hair cell conductance pairs with the potassium-sensitive hyperpolarization-activated cyclic nucleotide-gated channel (HCN) conductance in the afferent and creates resistive coupling at the synaptic cleft.