Artificial organs
-
Comparative Study
Evaluation of HL-20 roller pump and Rotaflow centrifugal pump on perfusion quality and gaseous microemboli delivery.
The purpose of this study was to compare the HL-20 roller pump (Jostra USA, Austin, TX, USA) and Rotaflow centrifugal pump (Jostra USA) on hemodynamic energy production and gaseous microemboli (GME) delivery in a simulated neonatal cardiopulmonary bypass (CPB) circuit under nonpulsatile perfusion. This study employed a simulated model of the pediatric CPB including a Jostra HL-20 heart-lung machine (or a Rotaflow centrifugal pump), a Capiox BabyRX05 oxygenator (Terumo Corporation, Tokyo, Japan), a Capiox pediatric arterial filter (Terumo Corporation), and ¼-inch tubing. The total volume of the experimental system was 700mL (500mL for the circuit and 200mL for the pseudo neonatal patient). ⋯ Postpump total hemodynamic energy (THE) increased with increasing flow rates and decreasing temperatures in both circuits using these two pumps. The HL-20 roller pump delivered more THE than the Rotaflow centrifugal pump at all tested flow rates and temperature conditions. Results suggest the HL-20 roller pump delivers more GME than the Rotaflow centrifugal pump but produces more hemodynamic energy under nonpulsatile perfusion mode.
-
Low birthweight (LBW) continues to be a high-risk factor in surgery for congenital heart disease. This risk is particularly very high in very low birthweight infants under 1500g and extremely LBW infants under 1000g. From January 2005 to December 2008, 33 consecutive LBW neonates underwent cardiac surgery in our clinic in keeping with the criteria for choice of surgery. ⋯ None of the cases showed a need for early reoperation. The acceptable early- and midterm mortality rates in this group suggest that these operations can be successfully performed. There is a need for further multicenter studies to evaluate these high-risk groups.
-
Several genetic polymorphisms have been identified to play a role in the occurrence and progression of renal dysfunction after cardiac surgery with cardiopulmonary bypass (CPB). Recently, it was demonstrated that the T allele of SNP rs1617640 in the promoter of the erythropoetin (EPO) gene is significantly associated with proliferative diabetic retinopathy (PDR) and end-stage renal disease (ESRD) due to increased EPO expression. This disease risk-associated gene and its potential pathway mediating severe microvascular complications in T-allele carriers could also play a role on renal dysfunction in patients who underwent cardiac surgery with CPB. ⋯ Our analysis suggests that the risk allele (T) of rs1617640 plays a role in the development of renal dysfunction after cardiac surgery with CPB. Patients with the TT risk allele required more frequent acute renal replacement therapy. Since our result is close to the border of significance, this hypothesis should be investigated in larger prospective studies with long-term follow-up to emphasize this polymorphism as a potential risk factor.
-
Comparative Study
Impact of tubing length on hemodynamics in a simulated neonatal extracorporeal life support circuit.
During extracorporeal life support (ECLS), a large portion of the hemodynamic energy is lost to various components of the circuit. Minimization of this loss in the circuit leads to better vital organ perfusion and decreases the risk of systemic inflammation. In this study, we evaluated the hemodynamic properties of differing lengths of tubing in a simulated neonatal ECLS circuit. ⋯ Upon cutting the tubing from 6 to 2 feet, the pressure drop of the arterial tubing decreased by half, while the pressure drop of the arterial cannula increased due to the slightly higher flow rates. These results suggest that compared to the arterial tubing, the arterial cannula has a larger impact on the hemodynamics of the circuit. There is a little influence of tubing length on the circuit flow rate.
-
Comparative Study
Cerebral oxygen metabolism during total body flow and antegrade cerebral perfusion at deep and moderate hypothermia.
The aim of this study is to evaluate the effect of temperature on cerebral oxygen metabolism at total body flow bypass and antegrade cerebral perfusion (ACP). Neonatal piglets were put on cardiopulmonary bypass (CPB) with the initial flow rate of 200mL/kg/min. After cooling to 18°C (n=6) or 25°C (n=7), flow was reduced to 100mL/kg/min (half-flow, HF) for 15min and ACP was initiated at 40mL/kg/min for 45min. ⋯ ACP provided sufficient oxygen to the brain at a total body flow rate of 100mL/kg/min at deep hypothermia. Although ACP provided minimum oxygenation to the brain which met the oxygen requirement, oxygen metabolism was altered during ACP at moderate hypothermia. ACP strategy at moderate hypothermia needs further investigation.