The American journal of medicine
-
Climate change has resulted in an increase in ambient temperatures during the summer months as well as an increase in risk of associated air pollution and of potentially disastrous bushfires throughout much of the world. The increasingly frequent combination of elevated summer temperatures and bushfires may be associated with acute increases in risks of cardiovascular events, but this relationship remains unstudied. We evaluated the individual and cumulative impacts of daily fluctuations in temperature, fine particulate matter of less than 2.5 µm (PM2.5) pollution and presence of bushfires on incidence of acute coronary syndromes and Takotsubo syndrome. ⋯ The combination of high temperatures, presence of bushfires and associated elevation of atmospheric PM2.5 concentrations represents a substantially increased risk for precipitation of acute coronary syndromes; this risk should be factored into health care planning including public education and acute hospital preparedness.
-
Lipoprotein apheresis acutely increases coronary microvascular blood flow. However, measurement techniques are time-consuming, costly, and invasive. The ocular vasculature may be an appropriate surrogate and an easily accessible window to investigate the microcirculation. Recent advances in ocular imaging techniques enable quick, noninvasive quantification of ocular microcirculation blood flow. The insights from these techniques represent a significant opportunity to study the short-term changes in optic disk blood flow after lipoprotein apheresis for inherited hypercholesterolemia. ⋯ A single lipoprotein apheresis session resulted in a statistically significant short-term increase in optic disk blood flow. These findings together with previous coronary microcirculation data suggest a similar ocular and coronary blood flow response to lipoprotein apheresis. Ocular microcirculation may represent a versatile biomarker for evaluating systemic microcirculatory health, including coronary microcirculation. Hence, it is plausible that plasma lipoprotein levels may influence optic disk blood flow.