The Journal of clinical investigation
-
Multicenter Study Clinical Trial
COVID-19 survival associates with the immunoglobulin response to the SARS-CoV-2 spike receptor binding domain.
BACKGROUNDSerological assays are of critical importance to investigate correlates of response and protection in coronavirus disease 2019 (COVID-19), to define previous exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in populations, and to verify the development of an adaptive immune response in infected individuals. METHODSWe studied 509 patients confirmed to have COVID-19 from the San Raffaele Hospital of Milan and 480 samples of prepandemic organ donor sera collected in 2010-2012. Using fluid-phase luciferase immune precipitation (LIPS) assays, we characterized IgG, IgM, and IgA antibodies to the spike receptor binding domain (RBD), S1+S2, nucleocapsid, and ORF6 to ORF10 of SARS-CoV-2, to the HCoV-OC43 and HCoV-HKU1 betacoronaviruses spike S2, and the H1N1Ca2009 flu virus hemagglutinin. ⋯ TRIAL REGISTRATIONCOVID-19 Patients Characterization, Biobank, Treatment Response and Outcome Predictor (COVID-BioB). ClinicalTrials.gov identifier: NCT04318366. FUNDINGIRCCS Ospedale San Raffaele and Università Vita Salute San Raffaele.
-
Gene editing of the erythroid-specific BCL11A enhancer in hematopoietic stem and progenitor cells (HSPCs) from patients with sickle cell disease (SCD) induces fetal hemoglobin (HbF) without detectable toxicity, as assessed by mouse xenotransplant. Here, we evaluated autologous engraftment and HbF induction potential of erythroid-specific BCL11A enhancer-edited HSPCs in 4 nonhuman primates. We used a single guide RNA (sgRNA) with identical human and rhesus target sequences to disrupt a GATA1 binding site at the BCL11A +58 erythroid enhancer. ⋯ Off-target edits were not observed. Nonhomologous end-joining repair alleles were enriched in engrafting HSCs. In summary, we found that edited HSCs can persist for at least 101 weeks after transplant and biallelic-edited HSCs provide substantial HbF levels in PB red blood cells, together supporting further clinical translation of this approach.
-
Clinical Trial
Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2.
BACKGROUNDInitial reports from the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic described children as being less susceptible to coronavirus disease 2019 (COVID-19) than adults. Subsequently, a severe and novel pediatric disorder termed multisystem inflammatory syndrome in children (MIS-C) emerged. We report on unique hematologic and immunologic parameters that distinguish between COVID-19 and MIS-C and provide insight into pathophysiology. ⋯ CONCLUSIONPediatric patients with SARS-CoV-2 are at risk for critical illness with severe COVID-19 and MIS-C. Cytokine profiling and examination of peripheral blood smears may distinguish between patients with MIS-C and those with severe COVID-19. FUNDINGFinancial support for this project was provided by CHOP Frontiers Program Immune Dysregulation Team; National Institute of Allergy and Infectious Diseases; National Cancer Institute; the Leukemia and Lymphoma Society; Cookies for Kids Cancer; Alex's Lemonade Stand Foundation for Childhood Cancer; Children's Oncology Group; Stand UP 2 Cancer; Team Connor; the Kate Amato Foundations; Burroughs Wellcome Fund CAMS; the Clinical Immunology Society; the American Academy of Allergy, Asthma, and Immunology; and the Institute for Translational Medicine and Therapeutics.
-
Comparative Study
Distinct clinical and immunological features of SARS-CoV-2-induced multisystem inflammatory syndrome in children.
BACKGROUNDPediatric SARS-CoV-2 infection can be complicated by a dangerous hyperinflammatory condition termed multisystem inflammatory syndrome in children (MIS-C). The clinical and immunologic spectrum of MIS-C and its relationship to other inflammatory conditions of childhood have not been studied in detail. METHODSWe retrospectively studied confirmed cases of MIS-C at our institution from March to June 2020. ⋯ No mortality was recorded in this cohort. CONCLUSIONMIS-C encompasses a broad phenotypic spectrum with clinical and laboratory features distinct from KD and MAS. FUNDINGThis work was supported by the National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases; the National Institute of Allergy and Infectious Diseases; Rheumatology Research Foundation Investigator Awards and Medical Education Award; Boston Children's Hospital Faculty Career Development Awards; the McCance Family Foundation; and the Samara Jan Turkel Center.
-
Clinical Trial
Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis.
Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyperinflammation and thrombotic microangiopathy, thereby increasing coronavirus 2019 (COVID-19) mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies, and NET/human aortic endothelial cell (HAEC) cocultures. Increased plasma levels of NETs, tissue factor (TF) activity, and sC5b-9 were detected in patients. ⋯ Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against severe acute respiratory syndrome coronavirus 2 that exploit complement or NETosis inhibition.